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Quantum Mechanics NAME:

Homework 4: Quantum Mechanics in Three Dimensions: Homeworks are not handed in or marked.
But you get a mark for reporting that you have done them. Once you’ve reported completion, you may look
at the already posted supposedly super-perfect solutions.
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011 qmult 00100 1 4 3 easy deducto-memory: central-force
1. In a central-force problem, the magnitude of central force depends only on:

a) the angle of the particle.
b) the vector ~r from the center to the particle.
c) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e) the uncertainty principle.

SUGGESTED ANSWER: (c)

Wrong Answers:
a) Nah.
b) Exactly wrong.

Redaction: Jeffery, 2001jan01

011 qmult 00200 1 1 2 easy memory: separation of variables
2. The usual approach to getting the eigenfunctions of the Hamiltonian in multi-dimensions is:

a) non-separation of variables. b) separation of variables. c) separation of invariables.
d) non-separation of invariables. e) non-separation of variables/invariables.

SUGGESTED ANSWER: (b) Yes separation of variables is the conventional name. See Ar-86.

Wrong Answers:
e) A nonsense answer

Redaction: Jeffery, 2001jan01

011 qmult 00210 1 1 3 easy memory: separation of variables
3. Say you have a differential equation of two independent variables x and y and you want to look for

solutions that can be factorized thusly f(x, y) = g(x)h(y). Say then it is possible to reorder equation
into the form

LHS(x) = RHS(y) ,

where LHS stands for left-hand side and RHS for right-hand side. Well LHS is explicitly independent
of y and implicitly independent of x:

∂LHS

∂y
= 0 and

∂LHS

∂x
=
∂RHS

∂x
= 0 .

Thus, LHS is equal to a constant C and necessarily RHS is equal to the same constant C which is called
the constant of separation (e.g., Arf-383). The solutions for g(x) and h(y) can be found separately
and are related to each other through C. The solutions for f(x, y) that cannot be factorized are not
obtained, of course, by the described procedured. However, if one obtains complete sets of g(x) and h(y)
solutions for the x-y region of interest, then any solution f(x, y) can be constructed at least to within
some approximation (Arf-443). Thus, the generalization of the described procedure is very general and
powerful. It is called:

a) separation of the left- and right-hand sides. b) partitioning.
c) separation of the variables. d) solution factorization. e) the King Lear method.

SUGGESTED ANSWER: (c)

Wrong answers:
d) Seems reasonable.
e) Metaphorical names due turn up in physics like the Monte Carlo method (named after a

famous casino in Monaco) and the Urca process (named after a casino in Rio de Janeiro). One
sometimes gets the feeling that theoretical physicists spend a lot of time in casinos. I used to
wander through them all the time in my Vegas years.

Redaction: Jeffery, 2008jan01
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011 qmult 00400 1 4 2 easy deducto memory: spherical harmonics 1
4. The eigensolutions of the angular part of the Hamiltonian for the central force problem are the:

a) linear harmonics. b) spherical harmonics. c) square harmonics.
d) Pythagorean harmonics. e) Galilean harmonics.

SUGGESTED ANSWER: (b)

Wrong Answers:
d) Legend has it that Pythagoras discovered the harmonic properties of strings.
e) Vincenzo Galileo, father of the other Galileo, was a scientist too and studied music

scientifically.

Redaction: Jeffery, 2001jan01

011 qmult 00420 1 4 3 easy deducto memory: spherical harmonic Y00
5. Just about the only spherical harmonic that people remember—and they really should remember it

too—is Y00 =:

a) eimφ. b) r2. c)
1√
4π

. d) θ2. e) 2a−3/2e−r/a.

SUGGESTED ANSWER: (c)

Wrong Answers:
a) This is the general azimuthal component of the spherical harmonics: m = 0,±1,±2, . . .
b) This is radial and it’s not normalizable.
d) Except for Y00 itself, the spherical harmonics are all combinations of sinusoidal functions

of the θ and φ.
e) This is the R10 hydrogenic radial wave function where a is the scale radius

a = a0
me

m

1

Z
,

where me is the electron mass, m is the reduced mass, Z is the number of unit charges
of the central particle, and a0 is the Bohr radius (Gr2005-137). The Bohr radius in MKS
units is given by

a0 =
h−2

me[e2/(4πε0)]
=
λC

2π

1

α
= 0.52917720859(36) Å ,

where e is the elementary charge, λC = h−/(mec) is the Compton wavelength, and α ≈ /137
is the fine structure constant.

Redaction: Jeffery, 2001jan01

011 qfull 00200 2 3 0 moderate math: central-force azimuthal component solution
Extra keywords: solving the azimuthal component of the central force problem

6. In the central force problem, the separated azimuthal part of the Schrödinger equation is:

d2Φ

dφ2
= −m2

ℓΦ ,

where −m2
ℓ is the constant of separation for the azimuthal part. The constant has been parameterized in

terms ofmℓ (which is not mass) since it turns out that for normalizable (and therefore physically allowed)
solutions that m must be an integer. The mℓ quantity is the z-component angular momentum quantum
number or magnetic quantum number (MEL-59; ER-240). The latter name arises since the z-components
of the angular momentum manifest themselves most noticeably in magnetic field phenomena.

a) Since the differential equation is second order, there should should be two independent solutions
for each value of m2

ℓ . Solve for the general solution Φ for each m2
ℓ : i.e., the solution that is a linear

combination of the two independent solutions with undetermined coefficients. Note that writing
the separation constant as m2

ℓ is so far just a parameterization and nothing yet demands that m2
ℓ
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be greater than zero or pure real. HINT: Use an exponential trial function with exponent ±(a+ib)
with a and b real. Also remember the special case of m2

ℓ = 0.

b) The solutions are continuous and so that quantum mechanical requirement is met. But another
one must be imposed for the azimuthal coordinate: the single-valuedness condition. Since we
have no interpretation for multi-valuedness, we micropostulate that it doesn’t happen. Impose the
single-valuedness condition on the generl solution

Φ = Ae(a+ib)φ +Be−(a+ib)φ ,

and show that a = 0 and mℓ must be an integer. Remember to consider the special case where
mℓ = 0?

c) What are the eigenfunction solutions for the z-component of the angular momentum operator

Lz =
h−
i

∂

∂φ
.

What are the eigenvalues that satisfy single-valuedness and continuity? What is the relationship
between these eigenfunction solutions and the azimuthal angle part of the hydrogenic atom wave
functions?

d) Normalize the allowed eigensolutions of Lz Note these solutions are, in fact, conventionally left
unnormalized: i.e., the coefficient of the special function that is the solution is left as just 1.
Normalization is conventionally imposed on the total orbital angular momentum solutions, spherical
harmonics.

SUGGESTED ANSWER:

a) The trial solution
Φ = e±(a+ib)φ

obviously satisfies the differential equation for

(a+ ib)2 = −m2
ℓ or (a+ ib) = i

√

m2
ℓ .

The general solution for each mℓ is then

Φ = Ae(a+ib)φ +Be−(a+ib)φ ,

where A and B are undetermined constants.
In the special case of m2

ℓ = 0, we have

Φ = Aφ+B ,

where A and B are undetermined constants.
Note that a 2nd order linear differential equation has only two independent solutions. So

we have found all the linearly independent solutions.

b) Let’s consider the exponential solutions first: i.e., those with m2
ℓ 6= 0.

Rather obviously, for the solution to be single-valued the a parameter must be zero. If it
wasn’t, then as you go around the axis in either direction the function would grow exponentially.
The function couldn’t be single-valued.

Now if we just had one term, then it would be pretty obvious that b would have to be
an integer to give single-valuedness. But with two terms, we actually do need a proof. We
demand that Φ(φ+ 2π) = Φ(φ) for all φ. Thus we must have

Aeib(φ+2π) +Be−ib(φ+2π) = Aeibφ +Be−ibφ .

Since symmetry might help, let’s rearrange the last expression to get

Aeib(φ+π)
[

eibπ − e−ibπ
]

= Be−ib(φ+π)
[

eibπ − e−ibπ
]

.
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If
eibπ − e−ibπ 6= 0 ,

then we can cancel out that factor and obtain

Ae2ib(φ+π) = B

which can only be true for general φ if b = 0 which implies eibπ − e−ibπ = 0 which contradicts
our assumption or if A = B = 0 which does not give a normalizable solution. The only case
allowed then is when

eibπ − e−ibπ = 0

which implies
eib(2π) = 1

which in turn imples that b is an integer.
Thus, for the exponential solution case, we conclude that the only allowed mℓ values are

given by
mℓ = 0,±1,±2,±3, . . .

and the general exponential solution is

Φ = Aei|mℓ|φ +Be−i|mℓ|φ .

For the linear solution
Φ = Aφ+B ,

single-valuedness requires that A = 0. The constant solution is just the mℓ = 0 solution all
over again.

c) Say we parameterize the eigenvalues as mℓh−. Thus, the eigenproblem is

LzΦ = mh−Φ .

The solutions that satisfy single-valuedness based on parts (a) and (b) are obviously

Φ = eimℓφ

where
mℓ = 0,±1,±2,±3, . . .

The azimuthal angle parts of the hydrogenic atom wave function can be constructed from the
eigenstates of the Lz operator.

d) By inspection, all the allowed normalized solutions are given by

Φ =
1√
2π
eimφ .

In actual fact, one seldom normalizes the azimuthal solutions when they stand alone. One
normalizes the total angular solutions which are the spherical harmonics.

Redaction: Jeffery, 2001jan01

012 qmult 00050 1 1 1 easy memory: hydrogen atom, 2-body
7. The hydrogen atom is the simplest of all neutral atoms because:

a) it is a 2-body system. b) it is a 3-body system. c) it has no electrons.
d) it has many electrons. e) hydrogen is the most abundant element in the universe.

SUGGESTED ANSWER: (a)

Wrong answers:
e) It is the most abundant element in the universe. But this doesn’t make it the simplest element.

In fact, perhaps it is the other way: because it is the simplest element, it is most abundant.
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However, even this is not necessarily so. The abundances of the elements depend on how things
were cooked up in the beginning. A different set of initial conditions would lead to different
universal abundances.

Redaction: Jeffery, 2001jan01

012 qmult 00100 1 1 3 easy memory: radial wave function requirements
8. What basic requirements must the radial part of hydrogenic atom wave function meet in order to be a

physical radial wave function?

a) Satisfy the radial part of the Schrödinger equation and grow exponentially as r → ∞.
b) Not satisfy the radial part of the Schrödinger equation and grow exponentially as r → ∞.
c) Satisfy the radial part of the Schrödinger equation and be normalizable.
d) Not satisfy the radial part of the Schrödinger equation and be normalizable.
e) None at all.

SUGGESTED ANSWER: (c) The Schrödinger equation is our basics physics in nonrelativistic
quantum mechanics. It must be satisfied. And of course a radial function must also be normalizable
(i.e., be square-integrable).

Wrong Answers:
b) Everything is wrong.
e) Oh c’mon.

Redaction: Jeffery, 2001jan01

012 qmult 00190 1 1 2 easy memory: hydrogen wave functions
9. The hydrogenic atom eigenstate wave functions contain a factor that causes them to:

a) increase exponentially with radius. b) decrease exponentially with radius.
c) increase logarithmically with radius. d) increase quadratically with radius.
e) increase linearly with wavelength.

SUGGESTED ANSWER: (b) The wave function must decrease rapidly with radius in order for
it to be normalizable.

Wrong answers:
a) Exactly wrong.

Redaction: Jeffery, 2001jan01

012 qmult 00200 1 4 1 easy deducto-memory: associated Laguerre polyn.
10. What special functions are factors in the radial part of the of the hydrogenic atom eigenstate wave

functions?

a) The associated Laguerre polynomials. b) The unassociated Laguerre polynomials.
c) The associated Jaguar polynomials. d) The unassociated jaguar polynomials.
e) The Hermite polynomials.

SUGGESTED ANSWER: (a)

Wrong Answers:
e) These are factors in the simple harmonic oscillator wave functions.

Redaction: Jeffery, 2001jan01

012 qmult 01000 1 4 1 easy deducto-memory: atomic spectroscopy
11. Almost all would agree that the most important empirical means for learning about atomic energy

eigenstates is:

a) spectroscopy. b) microscopy. c) telescopy. d) pathology. e) astrology.

SUGGESTED ANSWER: (a)

Wrong Answers:
e) It doesn’t even pretend to reveal atomic energy eigenstates.
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Redaction: Jeffery, 2001jan01

012 qfull 01200 2 3 0 moderate math: s electron in nucleus

Extra keywords: (Gr-142:4.14)

12. Let us consider the probability that the electron of a hydrogenic atom in the ground state will be in the
nucleus. Recall the wave function for ground state is

Ψ100(~r ) = R10(r)Y00(θ, φ) = 2a−3/2e−r/a × 1√
4π

(Gr2005-154), where a = aBohr[me/(mZN)]: aBohr ≈ 0.529Å is the Bohr radius, ZN is the nuclear
charge, me is the electron mass, and m is the reduced mass of the actual hydrogenic atom.

a) First assume that the wave function is accurate down to r = 0. It actually can’t be, of course. The
wave function was derived assuming a point nucleus and the nucleus is, in fact, extended. However,
the extension of the nucleus is of order 105 times smaller than the Bohr radius, and so the effect of
a finite nucleus is a small perturbation. Given that the nuclear radius is b, calculate the probability
of finding the electron in the nucleus. Use ǫ = b/(a/2) = 2b/a to simplify the formula. HINT: The
formula

g(n, x) =

∫ x

0

e−ttn dt = n!

(

1 − e−x
n
∑

ℓ=0

xℓ

ℓ!

)

could be of use.

b) Expand the part (a) answer in ǫ power series and show to lowest non-zero order that

P (r < b, ǫ << 1) =
1

6
ǫ3 =

4

3

(

b

a

)3

.

c) An alternate approach to find the probability of the electron being in the nucleus is assume Ψ(~r )
can be approximated by Ψ(0) over nucleus. Thus

P (r < b) ≈
(

4π

3

)

b3|Ψ(0)|2 .

Is this result consistent with the part (b) answer?

d) Assume b ≈ 10−15 m and a = 0.5 × 10−10 m. What is the approximate numerical value for finding
the electron in the nucleus? You can’t interpret this result as “the fraction of the time the electron
spends in the nucleus”. Nothing in quantum mechanics tells us that the electron spends time
definitely anywhere. One should simply stop with what quantum mechanics gives: the result is the
probability of finding the electron in nucleus.

SUGGESTED ANSWER:

a) Behold:

P (r < b) =

∫ b

0

∫ π

0

∫ 2π

0

|Ψ100|2r2 sin θ dr dθ dφ =

∫ b

0

|R10|2r2 dr

= 4a−3
(a

2

)3
∫ ǫ

0

x2e−x dx =
1

2

∫ ǫ

0

x2e−x dx

= 1 − e−ǫ

(

1 + ǫ+
1

2
ǫ2
)

,

where we have transformed the integration variable to x = r/(a/2) and have we have defined

ǫ =
b

(a/2)
=

2b

a
.
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b) Behold:

P (r < b, ǫ << 1) = 1 − e−ǫ

(

1 + ǫ+
1

2
ǫ2
)

≈ 1 − e−ǫ

(

eǫ − 1

6
ǫ3
)

≈ 1

6
ǫ3e−ǫ ≈ 1

6
ǫ3

=
4

3

(

b

a

)3

.

Note that each approximate equality is an equality to 3rd order in ǫ.
It is a trick, of course, to recognize that

1 + ǫ+
1

2
ǫ2 and eǫ − 1

6
ǫ3

are equal to 3rd order in ǫ. If you didn’t know the trick, then one would have to tediously
expand, multiply, collect, and cancel:

e−ǫ

(

1 + ǫ+
1

2
ǫ2
)

=

(

1 − ǫ+
1

2
ǫ2 − 1

6
ǫ3
)(

1 + ǫ+
1

2
ǫ2
)

= 1 + ǫ(1 − 1) + ǫ2
(

−1 +
1

2
+

1

2

)

+ ǫ3
(

−1

2
+

1

2
− 1

6

)

+ . . .

= 1 − 1

6
ǫ3 + . . . .

c) Behold:

P (r < b) ≈
(

4π

3

)

b3|Ψ(0)|2 =

(

4π

3

)

b3 × 4a−3 1

4π
=

4

3

(

b

a

)3

.

This result is exactly the part (b) answer. So we have exact consistency.

d) Behold:

P (r < b) ≈ 4

3

(

b

a

)3

≈ 4

3

(

2 × 10−5
)3

=
32

3
× 10−15 ≈ 10−14 .

This is a very small probability. But the probability of finding the electron merely close to the
nucleus could be much higher depending on how you define close.

Redaction: Jeffery, 2001jan01

013 qmult 00100 1 1 4 easy memory: ang. mom. commutation relations
13. The fundamental angular momentum commutation relation and a key corollary are, respectively:

a) [Ji, Jj ] = 0 and [J2, Ji] = Ji. b) [Ji, Jj ] = Jk and [J2, Ji] = 0.
c) [Ji, Jj ] = 0 and [J2, Ji] = 0. d) [Ji, Jj ] = ih−εijkJk and [J2, Ji] = 0.
e) [xi, pj ] = ih−δij , [xi, xj ] = 0, and [pi, pj ] = 0.

SUGGESTED ANSWER: (d)

Wrong Answers:
a) Both are wrong.
b) The first one is wrong.
c) The first one is dead wrong.
e) These are often called the canonical commutation relations (see, e.g., CT-150). They are

true relations, but not a right answer.

Redaction: Jeffery, 2001jan01

013 qmult 00910 1 1 3 easy memory: vector model
14. In the vector model for angular momentum of a quantum system with the standard axis for the

eigenstates being the z axis, the particles in the eigenstates are thought of as having definite z-
components of angular momentum mj h− and definite total angular momenta of magnitude

√

j(j + 1)h−,
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where j can stand for orbital, spin, or total angular momentum quantum number and mj is the z-
component quantum number. Recall j can be only be integer or half-integer and there are 2j + 1
possible values of mj given by −j,−j+1, . . . , j−1, j. The x-y component of the angular momementum

has magnitude
√

j(j + 1) −m2
j h
−, but it has no definite direction. Rather this component can be thought

of as pointing all x-y directions in simultaneous: i.e., it is in a superposition state of all direction states.
Diagramatically, the momentum vectors can be represented by

a) cones with axis aligned with the x-axis. b) cones with axis aligned with the y-axis.
c) cones with axis aligned with the z-axis. d) cones with axis aligned with the x-y-axis.
e) the cones of silence.

SUGGESTED ANSWER: (c)

Wrong answers:
e) “I demand the cones of silence Chief.”

“But Max you know those never work.”
“I insist Chief.”
Whirr.
“What did you say?”

Redaction: Jeffery, 2008jan01

013 qmult 02000 1 1 1 easy memory: added ang. mom. operators
15. Does the fundamental commutation relation for angular momentum operators (i.e., [Ji, Jj ] = ih−εijkJk)

apply to angular momentum operators formed by summation from angular momentum operators
applying to individual particles or to spatial and spin degrees of freedom? The answer is:

a) Yes. b) No. c) Maybe. d) All of the above. e) None of the above.

SUGGESTED ANSWER: (a)

The result actually follows from the way one constructs these operators. If one has particles 1
and 2, then

Ji = J1i + J2i .

The operators for different particles commute by micropostulate. Now one finds

[Ji, Jj ] = [J1i + J2i, J1j + 2j] = [J1i, J1j ] + [J1i, J2j ] + [J2i, J1j ] + [J2i, J2j ]

= ih−εijkJ1k + 0 + 0 + ih−εijkJ2k = ih−εijkJk .

Wrong Answers:
b) Exactly wrong.

Redaction: Jeffery, 2001jan01

013 qmult 02100 1 4 5 easy deducto-memory: Clebsch-Gordan coefficients
16. “Let’s play Jeopardy! For $100, the answer is: The name for the coefficients used in the expansion of

a total angular momentum state for 2 angular momentum degrees of freedom in terms of products of
individual angular momemtum states.”

What are the , Alex?

a) Racah W coefficients b) Wigner 6j symbols c) Buck-Rogers coefficients
d) Flash-Gordon coefficients e) Clebsch-Gordan coefficients

SUGGESTED ANSWER: (e)

Wrong answers:
a) Nah. Those are for summing 3 angular momentum degrees of freedom (Ba-346).
b) Same thing as (a) by a different name. Even Baym confesses they are exceedingly

unpleasant to calculate (Ba-346)—but that was before Mathematica.

Redaction: Jeffery, 2001jan01
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013 qmult 02200 1 4 5 easy deducto-memory: Clebsch-Gordan m rule

17. “Let’s play Jeopardy! For $100, the answer is: In constructing a set of |j1j2jm〉 states from a set
of |j1j2m1m2〉 states using Clebsch-Gordan coefficients, this is a strict constraint on the non-zero
coefficients.”

What is the rule , Alex?

a) of complete overtures b) of incomplete overtures c) m = m2
1 +m2

2 d) m = m1 −m2

e) m = m1 +m2

SUGGESTED ANSWER: (e)

Wrong answers:

a) Huh?

Redaction: Jeffery, 2001jan01

013 qfull 00100 2 5 0 moderate thinking: angular momentum operator identities
18. Prove the following angular momentum operator identities. HINT: Recall the fundamental angular

momentum commutator identity,

[Ji, Jj ] = ih−εijkJk , and the definition J± ≡ Jx ± iJy .

a) [Ji, J
2] = 0.

b) [J2, J±] = 0.

c) [Jz, J±] = ±h−J±.

d) J†
±J± = J∓J± = J2 − Jz(Jz ± h−).

e)

Jx =
1

2
(J+ + J−) and Jy =

1

2i
(J+ − J−) .

f) [J+, J−] = 2h−Jz.
g)

J2

{x
y} = ±1

4

(

J2
+ + J2

− ± {J+, J−}
)

,

where the upper case is for J2
x and the lower case for J2

y and where recall that {A,B} = AB +BA
is the anticommutator of A and B.

h)

J2 =
1

2
{J+, J−} + J2

z .

SUGGESTED ANSWER:

a) Behold:

[Ji, J
2] = [Ji, JjJj ] = JiJjJj − JjJjJi

= JiJjJj − JjJiJj + JjJiJj − JjJjJi

= [Ji, Jj ]Jj + Jj [Ji, Jj ] = ih−εijkJkJj + ih−εijkJjJk

= ih−εijkJkJj + ih−εikjJkJj = ih−εijkJkJj − ih−εijkJkJj

= 0 ,

where we have used relabeling of the dummy indices.

b) Behold:

[J2, J±] = [J2, Jx] ± i[J2, Jy] = 0 .

c) Behold:

[Jz, J±] = [Jz, Jx] ± i[Jz, Jy] = ih−Jy ± i2h−(−Jx) = ±h−J± .
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d) Behold:

J†
±J± = J∓J± = J2

x + J2
y ± iJxJy ∓ iJyJx = J2 − J2

z ± i[Jx, Jy]

= J2 − J2
z ∓ h−Jz

= J2 − Jz(Jz ± h−) .

e) By inspection.

f) Behold:
[J+, J−] = −i[Jx, Jy] + i[Jy, Jx] = 2h−Jz .

The [Jx, Jx] and [Jy, Jy] terms are zero of course.

g) Behold:

J2

{ x
y} = ±1

4

[

J2
+ + J2

− ± (J+J− + J−J+)
]

= ±1

4

(

J2
+ + J2

− ± {J+, J−}+

)

.

h) Behold:

J2 = J2
x + J2

y + J2
z =

1

2
{J+, J−} + J2

z .

Redaction: Jeffery, 2001jan01

013 qfull 00200 2 3 0 mod math: diagonalization of Jx for 3-d
Extra keywords: diagonalization of the J-x angular momentum matrix for 3-d

19. The x-component angular momentum operator matrix in a three-dimensional angular momentum space
expressed in terms of the z-component orthonormal basis (i.e., the standard basis with eigenvectors |1〉,
|0〉, and | − 1〉) is:

Jx =
h−√
2





0 1 0
1 0 1
0 1 0





(Co-659) and yes the 1/
√

2 factor is correct. Is this matrix Hermitian? Diagonalize this matrix:
i.e., solve for its eigenvalues and normalized eigenvectors (written in terms of the standard basis ket
eigenvectors) or, if you prefer in column vector form. Note the solution is somewhat simpler if you
solve the reduced eigen problem. Just divide both sides of the eigen equation by h−/

√
2 and solve for

the reduced eigenvalues. The physical eigenvalues are the reduced ones times h−/
√

2. Verify that the
eigenvectors are orthonormal.

NOTE: Albeit some consider it a sloppy notation since kets and bras are abstract vectors and
columns vectors are from a concrete representation, its concretely useful to equate them at times. In
the present case, the kets equate like so

|1〉 =





1
0
0



 , |0〉 =





0
1
0



 , | − 1〉 =





0
0
1



 ,

and the bras, like so

〈1| = (1, 0, 0)∗ , 〈0| = (0, 1, 0)∗ , 〈−1| = (0, 0, 1)∗ .

SUGGESTED ANSWER:

The x-component matrix is obviously Hermitian. Complex conjugating and transposing (which
amounts to Hermitian conjugating) leaves the matrix unchanged.

The eigenproblem for the x-component matrix in reduced dimensionless form (i.e., sans the
physical constant coefficients) is:





0 1 0
1 0 1
0 1 0









C1

C0

C−1



 = λred





C1

C0

C−1



 ,
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where the eigenvalues λred and eigenvectors ~C are unknown. We subtract the right-hand side from
the left to create a homogeneous matrix equation which only has non-trivial solutions (i.e., solutions
without all vectors being zero vectors) if the determinant of the matrix vanishes. The determinant
equation is

det

∣

∣

∣

∣

∣

∣

−λred 1 0
1 −λred 1
0 1 −λred

∣

∣

∣

∣

∣

∣

= 0 .

The determinant equation allows us to determine the eigenvalues from eigenvalue or characteristic
equation. For the 3 × 3 matrix the characteristic equation is easily found to be

(−λred)3 + 2λred = 0 .

One solution is obviously λred = 0 and the other two are λred = ±
√

2. These values are real as they
should be for a Hermitian matrix. Restoring the physical constants the eigenvalues are

λ = 0 and λ = ±h− .

The eigenvector components can be obtained by substituting the eigenvalues back into the
original eigenproblem equation. There are three equations for the coefficients, but one is redundant.
This leaves the absolute scale of the vectors undetermined: this lack of absolute scale is a
characteristic of homogenous matrix problems. Normalization fixes the scale in quantum mechanics.

For λred = 0, we find by inspection that

~Cx,0 =
1√
2





1
0
−1





or in ket form

|0〉x =
1√
2
(|1〉 − | − 1〉) .

For λred = ±
√

2, we have

C0 = ±
√

2C1 and C0 = ±
√

2C−1 , and so C−1 = C1 .

Normalizing, we have

~Cx,±1 =
1

2





1
±
√

2
1





or in ket form

| ± 1〉x =
1

2
(|1〉 ±

√
2|0〉 + | − 1〉) .

By inspection the eigenvectors are orthonormal.
Recall eigenvectors are unique only to within a global phase factor. Caveat markor.

Redaction: Jeffery, 2001jan01

014 qmult 00100 1 4 5 easy deducto-memory: spin defined
Extra keywords: mathematical physics

20. “Let’s play Jeopardy! For $100, the answer is: It is the intrinsic angular momentum of a fundamental
(or fundamental-for-most-purposes) particle. It is invariant and its quantum number s is always an
integer or half-integer.

What is , Alex?

a) rotation b) quantum number c) magnetic moment d) orbital angular momentum
e) spin

SUGGESTED ANSWER: (e)

Wrong answers:
a) Well no, but not a bad guess.
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Redaction: Jeffery, 2008jan01

014 qmult 00110 1 4 1 easy deducto-memory: Goudsmit and Uhlenbeck, spin
Extra keywords: Don’t abbreviate: it ruins the joke

21. “Let’s play Jeopardy! For $100, the answer is: Goudsmit and Ulhenbeck.”

a) Who are the original proposers of electron spin in 1925, Alex?
b) Who performed the Stern-Gerlach experiment, Alex?
c) Who are Wolfgang Pauli’s evil triplet brothers, Alex?
d) What are two delightful Dutch cheeses, Alex?
e) What were Rosencrantz and Gildenstern’s first names, Alex?

SUGGESTED ANSWER: (a) See Le-185 and ER-276. Actually Compton hinted at the idea in
1921, but didn’t follow up on it.

Wrong Answers:
b) Now wouldn’t you think Stern & Gerlach performed the Stern-Gerlach experiment? CT-

897 calls it the Stern-Gerlach experiment.
e) Rosencrantz and Gildenstern were real people: members of the Danish embassy to England

in 1592. Frederick (Fred) Rosenkrantz later met up with Johannes Kepler and thus
provides the missing link between Kepler and Shakespeare. Rosenkrantz died tragically
in a duel—trying to stop it, not fight it—but Shakespeare and Stoppard have made him
immortal.

Redaction: Jeffery, 2001jan01

014 qmult 00120 1 1 1 easy memory: spin magnitude
22. A spin s particle’s angular momentum vector magnitude (in the vector model picture) is

a)
√

s(s+ 1)h−. b) sh− c)
√

s(s− 1)h− d) −sh− e) s(s+ 1)h−2

SUGGESTED ANSWER: (a)

Wrong answers:
e) This is the magnitude squared or the eigenvalue of the S2

op spin operator.

Redaction: Jeffery, 2008jan01

014 qmult 00130 1 1 5 easy memory: eigenvalues of spin 1/2 particle
23. The eigenvalues of a COMPONENT of the spin of a spin 1/2 particle are always:

a) ±h−. b) ± h−
3

. c) ± h−
4

. d) ± h−
5

. e) ± h−
2

.

SUGGESTED ANSWER: (e)

Wrong Answers:

Redaction: Jeffery, 2001jan01

014 qmult 00130 1 1 2 easy memory: eigenvalues of spin s particle
24. The quantum numbers for the component of the spin of a spin s particle are always:

a) ±1. b) s, s− 1, s− 2, . . . ,−s+ 1,−s. c) ±1

2
. d) ±2. e) ±1

4
.

SUGGESTED ANSWER: (b)

Wrong Answers:
c) This is only correct for electrons.

Redaction: Jeffery, 2001jan01

014 qmult 00140 1 4 2 easy deducto-memory: spin and environment
25. Is the spin (not spin component) of an electron dependent on the electron’s environment?

a) Always.
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b) No. Spin is an intrinsic, unchanging property of a particle.
c) In atomic systems, no, but when free, yes.
d) Both yes and no.
e) It depends on a recount in Palm Beach.

SUGGESTED ANSWER: (b)

Wrong Answers:
e) Only for those who recall the American presidential election of 2000.

Redaction: Jeffery, 2001jan01

014 qmult 00400 1 4 5 easy deducto-memory: spin commutation relation
26. “Let’s play Jeopardy! For $100, the answer is:

[Si, Sj] = ih−εijkSk .”

What is , Alex?

a) the spin anticommutator relation b) an implicit equation for εijk c) an impostulate
d) an inobservable e) the fundamental spin commutation relation

SUGGESTED ANSWER: (e)

Wrong answers:
a) Spin 1/2 has the anticommutator relation {σi, σj} = 2δij1, where the sigmas are the Pauli

spin matrices and 1 is the unit matrix.
b) Not the best the answer in this context.
c) Arguably untrue.

Redaction: Jeffery, 2001jan01

014 qmult 00500 1 4 2 easy deducto-memory: Pauli spin matrices
27. “Let’s play Jeopardy! For $100, the answer is:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.”

What are , Alex?

a) dimensioned spin 1/2 matrices b) the Pauli spin matrices
c) the Pauli principle matrices d) non-Hermitian matrices
e) matrix-look-alikes, not matrices

SUGGESTED ANSWER: (b)

Wrong answers:
a) The Pauli spin matrices are the dimensionless spin 1/2 matrices.
d) Wrong.

Redaction: Jeffery, 2001jan01

014 qmult 00600 1 1 1 easy memory: spin anticommutator relation
28. The expression

{σi, σj} = 2δij1

is

a) the Pauli spin matrix anticommutator relation. b) the Pauli spin matrix commutator relation.
c) the fundamental spin commutator relation. d) the covariance of two standard deviations.
e) an oddish relation.

SUGGESTED ANSWER: (a)

Wrong Answers:
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d) It sort of looks like that doesn’t it.

Redaction: Jeffery, 2001jan01

014 qmult 00900 1 1 3 easy memory: space and spin operators commute
29. A spatial operator and a spin operator commute:

a) never. b) sometimes. c) always. d) always and never. e) to the office.

SUGGESTED ANSWER: (c)

Wrong Answers:
e) I don’t think this could reasonably be interpreted as a right answer.

Redaction: Jeffery, 2001jan01

014 qmult 01100 1 4 5 easy deducto-memory: spin-magnetic interaction
30. “Let’s play Jeopardy! For $100, the answer is:

~µ = g
q

2m
~J , ~F = ∇(~µ · ~B) , ~τ = ~µ× ~B , H = −~µ · ~B .”

a) What are Maxwell’s equations, Alex?
b) What are incorrect formulae, Alex?
c) What are classical formulae sans any quantum mechanical analogs, Alex?
d) What are quantum mechanical formulae sans any classical analogs, Alex?
e) What are formulae needed to treat the interaction of angular momentum of a particle and magnetic

field in classical and quantum mechanics, Alex?

SUGGESTED ANSWER: (e)

Wrong answers:
a) Nyet.

Redaction: Jeffery, 2001jan01

014 qmult 01200 1 1 2 easy memory: Bohr magneton
31. What is

µB =
eh−
2me

= 9.27400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T ?

a) The nuclear magneton, the characteristic magnetic moment of nuclear systems.
b) The Bohr magneton, the characteristic magnetic moment of electronic systems.
c) The intrinsic magnetic dipole moment of an electron.
d) The coefficient of sliding friction.
e) The zero-point energy of an electron.

SUGGESTED ANSWER: (b)

Wrong Answers:
a) The subscript “b” and the values should tell you this must be wrong.
c) No. For magnitude of the intrinsic magnetic dipole moment is g

√
3/2 times the Bohr

magneton (ER-274).

Redaction: Jeffery, 2001jan01

014 qmult 01210 1 1 3 easy memory: g factor g-factor
32. The g factor in quantum mechanics is the dimensionless factor for some system that multiplied by the

appropriate magneton (e.g., Bohr magneton for electron systems) times the angular momentum of the
system divided by h− gives the magnetic moment of the system. Sometimes the sign of the magnetic
moment is included in the g factor and sometimes it is just shown explicitly. The modern way seems to
be to include it, but yours truly finds that awkward and so for now yours truly doesn’t do it. For the
electron, the intrinsic magnetic moment operator associated with intrinsic spin is given by

~µop = −gµB

~Sop

h−
,
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where µB is the Bohr magneton and Sop is the spin vector operator. What is g for the intrinsic magnetic
moment operator of an electron to modern accuracy?

a) 1. b) 2. c) 2.0023193043622(15). d) 1/137. e) 137.

SUGGESTED ANSWER: (c)

Wrong answers:
b) This is what Dirac’s relativistic quantum theory gives. Modern quantum electrodynamics gives

to g to about 1 in 1012 (Wikipedia: 2008apr30: Precision tests of QED).

Redaction: Jeffery, 2008jan01

014 qmult 01210 1 1 4 easy memory: magnetic moment precession
Extra keywords: The precession is also called Larmor precession (En-114)

33. An object in a uniform magnetic field with magnetic moment due to the object’s angular momentum
will both classically and quantum mechanically:

a) Lancy progress. b) Lorenzo regress. c) London recess. d) Larmor precess.
e) Lamermoor transgress.

SUGGESTED ANSWER: (d)

Wrong Answers:
e) That too.

Redaction: Jeffery, 2001jan01

014 qfull 00100 2 5 0 moderate thinking: Pauli matrices in detail
34. The Pauli spin matrices are

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, and σz =

(

1 0
0 −1

)

.

a) Are the Pauli matrices Hermitian?

b) What is the result when Pauli matrices act on general vector

(

a
b

)

?

c) Diagonalize the Pauli matrices: i.e., solve for their eigenvalues and NORMALIZED eigenvectors.
NOTE: The verb ‘diagonalize’ takes its name from the fact that a matrix transformed to the
representation of its own eigenvectors is diagonal with the eigenvalues being the diagonal elements.
One often doesn’t actually write the diagonal matrix explicitly.

d) Prove that
σiσj = δij1 + iεijkσk ,

where i, j, and k stand for any of x, y, and z, 1 is the unit matrix (which can often be left as
understood), δij is the Kronecker delta, εijk is the Levi-Civita symbol, and Einstein summation is
used. HINT: I rather think by exhaustion is the only way: i.e., extreme tiredness.

e) Prove
[σi, σj ] = 2iεijkσk and {σi, σj} = 2δij ,

where {σi, σj} = σiσj + σjσi is the anticommutator of Pauli matrices. HINT: You should make
use of the part (d) expression.

f) Show that a general 2× 2 matrix can be expanded in the Pauli spin matrices plus the unit matrix:
i.e.,

(

a b
c d

)

= α1 + ~β · ~σ ,

where ~σ = (σx, σy, σz) is the vector of the Pauli matrices. HINT: Find expressions for the expansion
coefficients α, βx, βy, and βz.
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g) Let ~A and ~B be vectors of operators in general and let the components of ~B commute with the
Pauli matrices. Prove

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ .
HINT: Make use of the part (d) expression.

SUGGESTED ANSWER:

a) By inspection σ†
i = (σT

i )∗ = σi for all i. Thus all the Pauli matrices are Hermitian.

b) Behold:
(

0 1
1 0

)(

a
b

)

=

(

b
a

)

,

(

0 −i
i 0

)(

a
b

)

=

(

−ib
ia

)

,

and

σz =

(

1 0
0 −1

)(

a
b

)

=

(

a
−b

)

.

c) By inspection the eigen equation for all the Pauli matrices is λ2−1 = 0 with eigenvalues λ = ±1.
The eigen vectors for the first two matrices are solved for from the following equations

c2 = ±c1 and − ic2 = ±c1 .

Thus solutions for the eigenvectors—the third set follow by inspection—are

|x±〉 =
1√
2

(

1
±1

)

, |y±〉 =
1√
2

(

1
±i

)

,

and

|z+〉 =

(

1
0

)

and |z−〉 =

(

0
1

)

.

Note that eigenvectors are unique only to within a global phase factor. Thus eigenvectors that
look quite different than those above can also be solutions. Caveat markor. But I think I’ve
chosen the simplest look set of eigenvectors.

d) First, using the results of the part (b) answer or by any other means, we find

σ2
x =

(

1 0
0 1

)

= 1 , σ2
y =

(

1 0
0 1

)

= 1 , and σ2
z =

(

1 0
0 1

)

= 1 .

Second, using the results of the part (b) answer, (AB)† = B†A†, the Hermiticity of the Pauli
matrices, and the fact that i† = −i, we find

σxσy =

(

i 0
0 −i

)

= iσz ,

σyσx = −iσz ,

σyσz =

(

0 i
i 0

)

= iσx ,

σzσy = −iσx ,

σzσx =

(

0 1
−1 0

)

= iσy ,

and

σxσy = −iσy .

The above results exhaust the possibilies for a product of two Pauli spin matrices. Collectively
they prove the desired result (which, in fact, summarizes them):

σiσj = δij1 + iεijkσk .

e) Making use of the part (d) expression and the properties of the Levi-Civita symbol, we find

[σi, σj ] = σiσj − σjσi = iεijkσk − iεjikσk = 2iεijkσk
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and

{σi, σj} = σiσj + σjσi = 2δij + iεijkσk + iεjikσk = 2δij .

f) Let

(

a b
c d

)

= α1 + ~β · ~σ = α

(

1 0
0 1

)

+ βx

(

0 1
1 0

)

+ βy

(

0 −i
i 0

)

+ βz

(

1 0
0 −1

)

.

It follows that

a = α+ βz , d = α− βz , b = βx − iβy , and c = βx + iβy .

The solutions for the expansion coefficients follow at once:

α =
1

2
(a+ d) , βz =

1

2
(a− d) , βx =

1

2
(b+ c) , and βy =

i

2
(b− c) .

Since we have found explicit expressions for the coefficients of a general 2×2 matrix expansion,
we have proven that a general 2 × 2 matrix can be so expanded: QED.

g) Behold:

( ~A · ~σ)( ~B · ~σ) = AiσiBjσj = AiBjσiσj = AiBj(δij1 + iεijkσk) = AiBi + iεkijAiBjσk

= ~A · ~B + i( ~A× ~B) · ~σ .

Redaction: Jeffery, 2001jan01

014 qfull 00400 1 5 0 easy thinking: electron spin in B-field Hamiltonian
Extra keywords: electron spin in magnetic field Hamiltonian

35. What is the Hamiltonian fragment (piece, part) that describes the energy of an electron spin magnetic
moment in a magnetic field? This fragment in a Schrödinger equation can sometimes be separated
from the rest of the equation and solved as separate eigenvalue problem. Solve this separated
problem. The intrinsic angular momentum operator is ~S and assume the magnetic field points in
the z direction. HINTS: Think of the classical energy of a magnetic dipole in a magnetic field and use
the correspondence principle. This is not a long question.

SUGGESTED ANSWER:

This is easy. There is no translational kinetic term because we assume motionlessness (or in
another view have separated off the translational kinetic terms of the Hamiltonian) and no intrinsic
kinetic term needs to be considered (for some darn good reason such as the mythical rotational
kinetic energy is invariant). Thus no kinetic term is needed at all. Classically the potential energy
of a magnetic dipole in space is:

Ucl = −~µcl · ~B .

Quantization is easy since ~B doesn’t need to be quantized and the spin operator commutes with
~B. Admittedly both these notions are justified by experimental results ultimately, but they are
plausible a priori. Thus

H = −~µ · ~B = −γ~S · ~B = −γBzSz ,

where γ (which is called the gyromagnetic ratio) is given by

γ = −g eh
−

2m
= −gµB

h−
.

The g-factor for the electron spin is given by

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15) . . . ,



19

where α is the fine structure constant and where we note that some people include the negative
sign for the electron charge in the g-factor. The µB is the Bohr magneton: i.e., the characteristic
magnetic moment of electronic systems. Well the eigenvalues of the eigen problem are just

E± = ∓g
2
µBBz

and the eigenstates are just the z-basis eigenstates

|z+〉 =

(

1
0

)

and |z−〉 =

(

0
1

)

.

Redaction: Jeffery, 2001jan01

014 qfull 00500 2 5 0 moderate thinking: classical Larmor precession
36. Let’s tackle the classical Larmor precession.

a) What is Newton’s 2nd law in rotational form?

b) What is the torque on a magnetic dipole moment ~µ in a magnetic field ~B? HINT: Any first-year
text will tell you.

c) Say that the magnetic moment of a system is given by ~µ = γ~L, where γ is the gyromagnetic ratio

and ~L is the system’s angular momemtum. Say also that there is a magnetic field ~B = (0, 0, Bz).

Solve for the time evolution of ~L using Newton’s 2nd law in rotational form assuming the INITIAL
CONDITION ~L(t = 0) = (Lx,0, 0, Lz,0). HINTS: You should get coupled differential equations

for two components of ~L. They are not so hard to solve. For niceness you should define an
appropriate Larmor frequency ω.

SUGGESTED ANSWER:

a) Naturlich

d~L

dt
= ~τnet .

b) Auch naturlich

~τ = µ× ~B .

c) First we need to evaluate µ× ~B. Using the determinant rule,

µ× ~B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
µx µy µz

0 0 Bz

∣

∣

∣

∣

∣

∣

= (µyBz,−µxBz , 0) = (γLyBz,−γLxBz, 0) .

Clearly,

L′
z = 0 ,

and so Lz is a constant given by

Lz = Lz,0 .

For the other components we have the coupled differential equations

L′
x = ωLy and L′

y = −ωLx ,

where we have defined

ω = γBz .

With minimal hesitation we see that

L′′
x = ωL′

y = −ω2Lx
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which is just the simple harmonic oscillator equation: “it’s deja vue all over again” (Yogi
Berra). Given the initial conditions

Lx = Lx,0 cos(ωt)

and, with a mental bound,

Ly =
1

ω
L′

x = −Lx,0 sin(ωt) .

Thus we have the complete solution

~L = [Lx,0 cos(ωt),−Lx,0 sin(ωt), Lz,0] .

The behavior is Larmor precession with angular frequency ω = γBz and clockwise direction
(assuming ω > 0) when viewing down from positive z-axis. One can also call the fiducial
positive direction as the right-hand rule direction for the z-axis. In this usage, ω > 0 gives a
negative precession.

Note that
√

L2
x + L2

y + L2
z =

√

L2
x,0 + L2

z,0 is constant. Thus the magnitude of ~L is

constant and only the direction changes in time. We can get this result in another way. Take
the inner product of the vector differential equation for ~L

d~L

dt
= γ~L× ~B

with ~L and you find

~L · d
~L

dt
=

1

2

dL2

dt
= γ~L · (~L× ~B) = γLiεijkLjBk = γBkεkijLiLj = −γBkεkijLiLj ,

where we relabeled the dummy indices to make the last equality. If any number a = −a, then
a = 0. Thus dL2/dt = 0, and L2 is a constant. Thus again we find that the magnitude of
~L is constant. This result is true even if ~B varies in time and space provided our differential
equation holds. I think it always does—hm.

Redaction: Jeffery, 2001jan01



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore it neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉
21
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4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ
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H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity
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En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉
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eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)
∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =
m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =
∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx
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Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n
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N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−


