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Quantum Mechanics NAME:

Homework 3: Formalism: Homeworks are not handed in or marked. But you get a mark for reporting
that you have done them. Once you’ve reported completion, you may look at the already posted supposedly
super-perfect solutions.

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 16. O O O O O

2. O O O O O 17. O O O O O

3. O O O O O 18. O O O O O

4. O O O O O 19. O O O O O

5. O O O O O 20. O O O O O

6. O O O O O 21. O O O O O

7. O O O O O 22. O O O O O

8. O O O O O 23. O O O O O

9. O O O O O 24. O O O O O

10. O O O O O 25. O O O O O

11. O O O O O 26. O O O O O

12. O O O O O 27. O O O O O

13. O O O O O 28. O O O O O

14. O O O O O 29. O O O O O

15. O O O O O 30. O O O O O
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1. The sum of two vectors belonging to a vector space is:

a) a scalar.
b) another vector, but in a different vector space.
c) a generalized cosine.
d) the Schwarz inequality.
e) another vector in the same vector space.

2. “Let’s play Jeopardy! For $100, the answer is: |〈α|β〉|2 ≤ 〈α|α〉〈β|β〉.”
What is , Alex?

a) the triangle inequality b) the Heisenberg uncertainty principle c) Fermat’s last theorem
d) the Schwarz inequality e) Schubert’s unfinished last symphony

3. Any set of linearly independent vectors can be orthonormalized by the:

a) Pound-Smith procedure. b) Li Po tao. c) Sobolev method. d) Sobolev-P method.
e) Gram-Schmidt procedure.

4. A unitary matrix is defined by the expression:

a) U = UT , where superscript T means transpose. b) U = U †. c) U = U∗.
d) U−1 = U †. e) U−1 = U∗.

5. What are the eigenvalues of
(

1 −i
i 1

)

?

a) Both are 0. b) 0 and 1. c) 0 and −1. d) 0 and 2. e) −i and 1.

6. Consider ordinary 3-dimensional vectors with complex components specified by a 3-tuple: (x, y, z). They
constitute a 3-dimensional vector space. Are the following subsets of this vector space vector spaces? If
so, what is their dimension? HINT: See Gr-435 for all the properties a vector space must have.

a) The subset of all vectors (x, y, 0).

b) The subset of all vectors (x, y, 1).

c) The subset of all vectors of the form (a, a, a), where a is any complex number.

7. A vector space is constituted by a set of vectors {|α〉, |β〉, |γ〉, . . .} and a set of scalars {a, b, c, . . .}
(ordinary complex numbers is all that quantum mechanics requires) subject to two operations vector
addition and scalar multiplication obeying the certain rules. Note it is the relations between vectors
that make them constitute a vector space. What they “are” we leave general. The rules are:

i) A sum of vectors is a vector:
|α〉 + |β〉 = |γ〉 ,

where |α〉 and |β〉 are any vectors in the space and |γ〉 also in the space. Note we have not defined
what vector addition consists of. That definition goes beyond the general requirements.

ii) Vector addition is commutative:
|α〉 + |β〉 = |β〉 + |α〉 .

iii) Vector addition is associative:

(|α〉 + |β〉) + |γ〉 = |α〉 + (|β〉 + |γ〉) .

iv) There is a zero or null vector |0〉 such that

|α〉 + |0〉 = |α〉 ,

v) For every vector |α〉 there is an inverse vector | − α〉 such that

|α〉 + | − α〉 = |0〉 .
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vi) Scalar multiplication of a vector gives a vector:

a|α〉 = |β〉 .

vii) Scalar multiplication is distributive on vector addition:

a(|α〉 + |β〉) = a|α〉 + a(|β〉) .

viii) Scalar multiplication is distributive on scalar addition:

(a+ b)|α〉 = a|α〉 + b|α〉 .

ix) Scalar multiplication is associative with respect to scalar multiplication:

(ab)|α〉 = a(b|α〉) .

x) One has
0|α〉 = |0〉 .

xi) Finally, one has
1|α〉 = |α〉 .

NOTE: Note that
|0〉 = 0|α〉 = [1 + (−1)]|α〉 = |α〉 + (−1)|α〉 ,

and thus we find that
| − α〉 = −|α〉 .

So the subtraction of a vector is just the addition of its inverse. This is consistent with all ordinary
math.

If any vector in the space can be written as linear combination of a set of linearly independent
vectors, that set is called a basis and is said to span the set. The number of vectors in the basis is the
dimension of the space. In general there will be infinitely many bases for a space.

Finally the question. Consider the set of polynomials {P (x)} (with complex coefficients) and degree
less than n. For each of the subsets of this set (specified below) answer the following questions: 1) Is
the subset a vector space? Inspection usually suffices to answer this question. 2) If not, what property
does it lack? 3) If yes, what is the most obvious basis and what is the dimension of the space?

a) The subset that is the whole set.

b) The subset of even polynomials.

c) The subset where the highest term has coefficient a (i.e., the leading coefficient is a) and a is a
general complex number, except a 6= 0.

d) The subset where P (x = g) = 0 where g is a general real number. (To be really clear, I mean the
subset of polynomials that are equal to zero at the point x = g.)

e) The subset where P (x = g) = h where g is a general real number and h is a general complex
number, except h 6= 0.

8. Prove that the expansion of a vector in terms of some basis is unique: i.e., the set of expansion coefficients
for the vector is unique.

9. Say {|αi〉} is a basis (i.e., a set of linearly independent vectors that span a vector space), but it is
not orthonormal. The first step of the Gram-Schmidt orthogonalization procedure is to normalize the
(nominally) first vector to create a new first vector for a new orthonormal basis:

|α′
1〉 =

|α1〉
||α1||

,
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where recall that the norm of a vector |α〉 is given by

||α|| = || |α1〉 || =
√

〈α|α〉 .

The second step is create a new second vector that is orthogonal to the new first vector using the old
second vector and the new first vector:

|α′
2〉 =

|α2〉 − |α′
1〉〈α′

1|α2〉
|| |α2〉 − |α′

1〉〈α′
1|α2〉 ||

.

Note we have subtracted the projection of |α2〉 on |α′
1〉 from |α2〉 and normalized.

a) Write down the general step of the Gram-Schmidt procedure.

b) Why must an orthonormal set of non-null vectors be a linearly independent.

c) Is the result of a Gram-Schmidt procedure independent of the order the original vectors are used?
HINT: Say you first use vector |αa〉 of the old set in the procedure. The first new vector is just
|αa〉 normalized: i.e., |α′

a〉=|αa〉/||αa||. All the other new vectors will be orthogonal to |α′
a〉. But

what if you started with |αb〉 which in general is not orthogonal to |αa〉?
d) How many orthonormalized bases can an n dimensional space have in general? (Ignore the strange

n = 1 case.) HINT: Can’t the Gram-Schmidt procedure be started with any vector at all in the
vector space?

e) What happens in the procedure if the original vector set {|αi〉} does not, in fact, consist of all
linearly independent vectors? To understand this case analyze another apparently different case.
In this other case you start the Gram-Schmidt procedure with n original vectors. Along the way
the procedure yields null vectors for the new basis. Nothing can be done with the null vectors:
they can’t be part of a basis or normalized. So you just put those null vectors and the vectors
they were meant to replace aside and continue with the procedure. Say you got m null vectors in
the procedure and so ended up with n − m non-null orthonormalized vectors. Are these n − m
new vectors independent? How many of the old vectors were used in constructing the new n−m
non-null vectors and which old vectors were they? Can all the old vectors be recontructed from the
the new n−m non-null vectors? Now answer the original question.

f) If the original set did consist of n linearly independent vectors, why must the new orthonormal set
consist of n linearly independent vectors? HINT: Should be just a corollary of the part (e) answer.

g) Orthonormalize the 3-space basis consisting of

|α1〉 =





1 + i
1
i



 , |α2〉 =





i
3
1



 , and |α3〉 =





0
32
0



 .

Input the vectors into the procedure in the reverse of their nominal order: why might a marker
insist on this? Note setting kets equal to columns is a lousy notation, but you-all know what I
mean. The bras, of course, should be “equated” to the row vectors. HINT: Make sure you use the
normalized new vectors in the construction procedure.

10. As Andy Rooney says (or used to say if this problem has reached the stage where only old fogies
remember that king of the old fogies) don’t you just hate magic proofs where you start from some
unmotivated expression and do a number of unmotivated steps to arrive at a result that you could never
have been guessed from the way you were going about getting it. Well sans too many absurd steps, let
us see if we can prove the Schwarz inequality

|〈α|β〉|2 ≤ 〈α|α〉〈β|β〉

for general vectors |α〉 and |β〉. Note the equality only holds in two cases. First when |β〉 = a|α〉, where
a is some complex constant. Second, when either or both of |α〉 and |β〉 are null vectors: in this case,
one has zero equals zero.

NOTE: A few facts to remember about general vectors and inner products. Say |α〉 and |β〉 are general
vectors. By the definition of the inner product, we have that 〈α|β〉 = 〈β|α〉∗. This implies that 〈α|α〉 is
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pure real. If c is a general complex number, then the inner product of |α〉 and c|β〉 is 〈α|c|β〉 = c〈α|β〉.
Next we note that that another inner-product property is that 〈α|α〉 ≥ 0 and the equality only holds if
|α〉 is the null vector. The norm of |α〉 is ||α|| =

√

〈α|α〉 and |α〉 can be normalized if it is not null: i.e.,
for |α〉 not null, the normalized version is |α̂〉 = |α〉/||α||.
a) In doing the proof of the Schwarz inequality, it is convenient to have the result that the bra

corresponding to c|β〉 (where |β〉 is a general vector and c is a general complex number) is 〈β|c∗.
Prove this correspondance. HINT: Consider general vector |α〉 and the inner product

〈α|c|β〉

and work your way by valid steps to
〈β|c∗|α〉∗

and that completes the proof since
〈α|γ〉 = 〈γ|α〉∗

for general vectors |α〉 and |γ〉.
b) The next thing to do is to figure out what the Schwarz inequality is saying about vectors including

those 3-dimensional things we have always called vectors. Let us a restrict the generality of |α〉 by
demanding it not be a null vector for which the Schwarz inequality is already proven. Since |α〉
is not null, it can be normalized. Let |α̂〉 = |α〉/||α|| be the normalized version of |α〉. Divide the
Schwarz inequality by ||α||2. Now note that the component of |β〉 along the |α̂〉 direction is

|β‖〉 = |α̂〉〈α̂|β〉 .

Evaluate 〈β‖|β‖〉. Now what is the Schwarz inequality telling us.

c) The vector component of |β〉 that is orthogonal to |α̂〉 (and therefore |β‖〉) is

|β⊥〉 = |β〉 − |β‖〉 .

Prove this and then prove the Schwarz inquality itself (for |α〉 not null) by evaluating 〈β|β〉 expanded
in components. What if |α〉 is a null vector?

11. The general inner-product vector space definition of generalized angle according to Gr-440 is

cos θgen =
|〈α|β〉|

√

〈α|α〉〈β|β〉
,

where |α〉 and |β〉 are general non-zero vectors.

a) Is this definition completely consistent with the ordinary definition of an angle from the ordinary
vector dot product? Why or why not?

b) Find the generalized angle between vectors

|α〉 =





1 + i
1
i



 and |β〉 =





4 − i
0

2 − 2i



 .

12. Prove the triangle inequality:
||(|α〉 + |β〉)|| ≤ ||α|| + ||β|| .

HINT: Start with ||(|α〉 + |β〉)||2, expand, and use reality and the Schwarz inequality

|〈α|β〉|2 ≤ 〈α|α〉〈β|β〉 = ||α||2 × ||β||2 .

13. Prove the following matrix identities:

a) (AB)T = BTAT, where superscript “T” means transpose.
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b) (AB)† = B†A†, where superscript † means Hermitian conjugate.

c) (AB)−1 = B−1A−1.

d) (UV )−1 = (UV )† (i.e., UV is unitary) given that U and V are unitary. In other words, prove the
product of unitary matrices is unitiary.

e) (AB)† = AB (i.e., AB is Hermitian) given that A and B are commuting Hermitian matrices. Does
the converse hold: i.e., does (AB)† = AB imply A and B are commuting Hermitian matrices?
HINTS: Find a trivial counterexample. Try B = A−1.

f) (A+B)† = A+B (i.e., A+B is Hermitian) given that A and B are Hermitian. Does the converse
hold? HINT: Find a trivial counterexample to the converse.

g) (U + V )† = (U + V )−1 (i.e., U + V is unitary) given that U and V are unitary—that is, prove
this relation if it’s indeed true—if it’s not true, prove that it’s not true. HINT: Find a simple
counterexample: e.g., two 2 × 2 unit matrices.

14. There are 4 simple operations that can be done to a matrix: inversing, (−1), complex conjugating (∗),
transposing (T ), and Hermitian conjugating (†). Prove that all these operations mutually commute. Do
this systematically: there are

(

4

2

)

=
4!

2!(4 − 2)!
= 6

combinations of the 2 operations. We assume the matrices have inverses for the proofs involving them.

15. If f(x) and g(x) are square-integrable complex functions, then the inner product

〈f |g〉 =

∫ ∞

−∞

f∗g dx

exists: i.e., is convergent to a finite value. In other words, that f(x) are g(x) are square-integrable is
sufficient for the inner product’s existence.

a) Prove the statement for the case where f(x) and g(x) are real functions. HINT: In doing this it
helps to define a function

h(x) =

{

f(x) where |f(x)| ≥ |g(x)| (which we call the f region);
g(x) where |f(x)| < |g(x)| (which we call the g region),

and show that it must be square-integrable. Then “squeeze” 〈f |g〉.
b) Now prove the statement for complex f(x) and g(x). HINTS: Rewrite the functions in terms of

their real and imaginary parts: i.e.,

f(x) = fRe(x) + ifIm(x)

and

g(x) = gRe(x) + igIm(x) .

Now expand

〈f |g〉 =

∫ ∞

−∞

f∗g dx

in the terms of the new real and imaginary parts and reduce the problem to the part (a) problem.

c) Now for the easy part. Prove the converse of the statement is false. HINT: Find some trivial
counterexample.

d) Now another easy part. Say you have a vector space of functions {fi} with inner product defined
by

∫ ∞

−∞

f∗
j fk dx .

Prove the following two statements are equivalent: 1) the inner product property holds; 2) the
functions are square-integrable.
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16. Consider the operator

Q = − d2

dx2
+ x2 .

a) Show that f(x) = e−x2/2 is an eigenfunction of Q and determine its eigenvalue.

b) Under what conditions, if any, is Q a Hermitian operator? HINTS: Recall

〈g|Q†|f〉∗ = 〈f |Q|g〉

is the defining relation for the Hermitian conjugate Q† of operator Q. You will have to write
the matrix element 〈f |Q|g〉 in the position representation and use integration by parts to find the
conditions.

17. Do the following.

a) Show explicitly that any linear combination of two functions in the Hilbert space L2(a, b) is also in
L2(a, b). (By explicitly, I mean don’t just refer to the definition of a vector space which, of course
requires the sum of any two vectors to be a vector.)

b) For what values of real number s is f(x) = |x|s in L2(−a, a)
c) Show that f(x) = e−|x| is in L2 = L2(−∞,∞). Find the wavenumber space representation of f(x):

recall the wavenumber “orthonormal” basis states in the position representation are

〈x|k〉 =
eikx

√
2π

.

18. Some general operator and vector identities should be proven. Recall the definition of the Hermitian
conjugate of general operator Q is giveny by

〈α|Q|β〉 = 〈β|Q†|α〉∗ ,

where |α〉 and |β〉 are general vectors.

a) Prove that the bra corresponding to ket vector Q|β〉 is 〈β|Q† for general Q and |β〉. HINT:
Consider general vector |α〉 and the inner product

〈α|Q|β〉

and work your way by valid steps to
〈β|Q†|α〉∗

and that completes the proof since
〈α|γ〉 = 〈γ|α〉∗

for general vectors |α〉 and |γ〉.
b) Show that the Hermitian conjugate of a scalar c is just its complex conjugate.

c) Prove for operators, not matrices, that

(AB)† = B†A† .

The result is, of course, consistent with matrix representations of these operators. But there
are representations in which the operators are not matrices: e.g., the momentum operator in the
position representation is differentiating operator

p =
h−
i

∂

∂x
.

Our proof holds for such operators too since we’ve done the proof in the general operator-vector
formalism.
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d) Generalize the proof in part (c) for an operator product of any number.

e) Prove that (A+B)† = A† +B†.

f) Prove that c[A,B] is a Hermitian operator for Hermitian A and B only when c is pure imaginary
constant.

19. For an inner product vector space there is some rule for calculating the inner product of two general
vectors: an inner product being a complex scalar. If |α〉 and |β〉 are general vectors, then their inner
product is denoted by

〈α|β〉 ,

where in general the order is significant. Obviously different rules can be imagined for a vector space
which would lead to different values for the inner products. But the rule must have three basic properties:

〈β|α〉 = 〈α|β〉∗ ,(1)

〈α|α〉 ≥ 0 , where 〈α|α〉 = 0 if and only if |α〉 = |0〉,(2)

and

〈α|
(

b|β〉 + c|γ〉
)

= b〈α|β〉 + c〈α|γ〉 ,(3)

where |α〉, |β〉, and |γ〉 are general vectors of the vector space and b and c are general complex scalars.

There are some immediate corollaries of the properties. First, if 〈α|β〉 is pure real, then

〈β|α〉 = 〈α|β〉 .

Second, if 〈α|β〉 is pure imaginary, then

〈β|α〉 = −〈α|β〉 .

Third, if
|δ〉 = b|β〉 + c|γ〉 ,

then
〈δ|α〉∗ = 〈α|δ〉 = b〈α|β〉 + c〈α|γ〉

which implies
〈δ|α〉 = b∗〈β|α〉 + c∗〈γ|α〉 .

This last result makes
(

〈β|b∗ + 〈γ|c∗
)

|α〉 = b∗〈β|α〉 + c∗〈γ|α〉

a meaningful expression. The 3rd rule for a vector product inner space and last corollary together mean
that the distribution of inner product multiplication over addition happens in the normal way one is
used to.

Dirac had the happy idea of defining dual space vectors with the notation 〈α| for the dual vector
of |α〉: 〈α| being called the bra vector or bra corresponding to |α〉, the ket vector or ket: “bra” and
“ket” coming from “bracket.” Mathematically, the bra 〈α| is a linear function of the vectors. It has the
property of acting on a general vector |β〉 and yielding a complex scalar: the scalar being exactly the
inner product 〈α|β〉.

One immediate consequence of the bra definition can be drawn. Let |α〉, |β〉, and a be general and
let

|α′〉 = a|α〉 .

Then
〈α′|β〉 = 〈β|α′〉∗ = a∗〈β|α〉∗ = a∗〈α|β〉

implies that the bra corresponding to |α′〉 is given by

〈α′| = a∗〈α| = 〈α|a∗ .
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The use of bra vectors is perhaps unnecessary, but they do allow some operations and properties
of inner product vector spaces to be written compactly and intelligibly. Let’s consider a few nice uses.

a) The projection operator or projector on to unit vector |e〉 is defined by

Pop = |e〉〈e| .

This operator has the property of changing a vector into a new vector that is |e〉 times a scalar. It
is perfectly reasonable to call this new vector the component of the original vector in the direction
of |e〉: this definition of component agrees with our 3-dimensional Euclidean definition of a vector
component, and so is a sensible generalization of that the 3-dimensional Euclidean definition. This
generalized component would also be the contribution of a basis of which |e〉 is a member to the
expansion of the original vector: again the usage of the word component is entirely reasonable. In
symbols

Pop|α〉 = |e〉〈e|α〉 = a|e〉 ,
where a = 〈e|α〉.

Show that P 2
op = Pop, and then that Pn

op = Pop, where n is any integer greater than or equal
to 1. HINTS: Write out the operators explicitly and remember |e〉 is a unit vector.

b) Say we have
Pop|α〉 = a|α〉 ,

where Pop = |e〉〈e| is the projection operator on unit vector |e〉 and |α〉 is unknown non-null vector.
Solve for the TWO solutions for a. Then solve for the |α〉 vectors corresponding to these solutions.
HINTS: Act on both sides of the equation with 〈e| to find an equation for one a value. This
equation won’t yield the 2nd a value—and that’s the hint for finding the 2nd a value. Substitute
the a values back into the original equation to determine the corresponding |α〉 vectors. Note one
a value has a vast degeneracy in general: i.e., many vectors satisfy the original equation with that
a value.

c) The Hermitian conjugate of an operator Q is written Q†. The definition of Q† is given by the
expression

〈β|Q†|α〉 = 〈α|Q|β〉∗ ,
where |α〉 and |β〉 are general vectors. Prove that the bra corresponding to ket Q|β〉 must 〈β|Q† for
general |α〉. HINTS: Let |β′〉 = Q|β〉 and substitute this for Q|β〉 in the defining equation of the
Hermitian conjugate operator. Note operators are not matrices (although they can be represented
as matrices in particular bases), and so you are not free to use purely matrix concepts: in particular
the concepts of tranpose and complex conjugation of operators are not generally meaningful.

d) Say we define a particular operator Q by

Q = |φ〉〈ψ| ,

where |φ〉 and |ψ〉 are general vectors. Solve for Q†. Under what condition is

Q† = Q ?

When an operator equals its Hermitian conjugate, the operator is called Hermitian just as in the
case of matrices.

e) Say {|ei〉} is an orthonormal basis. Show that

|ei〉〈ei| = 1 ,

where we have used Einstein summation and 1 is the unit operator. HINT: Expand a general
vector |α〉 in the basis.

20. “Let’s play Jeopardy! For $100, the answer is: A space of all square-integrable functions on the x interval
(a, b).”

What is a , Alex?
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a) non-inner product vector space b) non-vector space c) Dilbert space
d) Dogbert space e) Hilbert space

21. The scalar product 〈f |g〉∗ in general equals:

a) 〈f |g〉. b) i〈f |g〉. c) 〈g|f〉. d) 〈f |i|g〉. e) 〈f |(−i)|g〉.
22. “Let’s play Jeopardy! For $100, the answer is: It changes a vector into another vector.”

What is a/an , Alex?

a) wave function b) scalar product c) operator d) bra e) telephone operator

23. Given general operators A and B, (AB)† equals:

a) AB. b) A†B†. c) A. d) B. e) B†A†.

24. The Hermitian conjugate of the operator λ|φ〉〈χ|ψ〉〈ℓ|A (with λ a scalar and A an operator) is:

a) λ|φ〉〈χ|ψ〉〈ℓ|A. b) λ|φ〉〈χ|ψ〉〈ℓ|A†. c) A|ℓ〉〈ψ|χ〉〈φ|λ∗ . d) A|ℓ〉〈ψ|χ〉〈φ|λ.
e) A†|ℓ〉〈ψ|χ〉〈φ|λ∗.

25. Compatible observables:

a) anticommute. b) are warm and cuddly with each other. c) have no hair. d) have no
complete simultaneous orthonormal basis. e) commute.

26. The parity operator Π acting on f(x) gives:

df/dx. b) 1/f(x). c) f(−x). d) 0. e) a spherical harmonic.

27. Given the position representation for an expectation value

〈Q〉 =

∫ ∞

−∞

Ψ(x)∗QΨ(x) dx ,

what is the braket representation?

a) 〈Q|Ψ∗|Q〉. b) 〈Ψ∗|Q|Ψ〉. c) 〈Ψ|Q|Ψ〉. d) 〈Ψ|Q†|Ψ〉. e) 〈Q|Ψ|Q〉.
28. What are the three main properties of the solutions to a Hermitian operator eigenproblem?

a) (i) The eigenvalues are pure IMAGINARY. (ii) The eigenvectors are guaranteed orthogonal,
except for those governed by degenerate eigenvalues and these can always be orthogonalized.
(iii) The eigenvectors DO NOT span all space.

b) (i) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except
for those governed by degenerate eigenvalues and these can always be orthogonalized. (iii) The
eigenvectors span all space in ALL cases.

c) (i) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except
for those governed by degenerate eigenvalues and these can always be orthogonalized. (iii) The
eigenvectors span all space for ALL FINITE-DIMENSIONAL spaces. In infinite dimensional
cases they may or may not span all space. It is quantum mechanics postulate that the eigenvectors
of an observable (which is a Hermitian operator) span all space.

d) (i) The eigenvalues are pure IMAGINARY. (ii) The eigenvectors are guaranteed orthogonal,
except for those governed by degenerate eigenvalues and these can always be orthogonalized.
(iii) The eigenvectors span all space in ALL FINITE-DIMENSIONAL spaces. In infinite
dimensional cases they may or may not span all space.

e) (i) The eigenvalues are pure REAL. (ii) The eigenvectors are guaranteed orthogonal, except for
those governed by degenerate eigenvalues and these can always be orthogonalized.

29. “Let’s play Jeopardy! For $100, the answer is: A physically significant Hermitian operator possessing a
complete set of eigenvectors.”

What is a/an , Alex?

a) conjugate b) bra c) ket d) inobservable e) observable

30. In the precisely-formulated time-energy inequality, the ∆t is:
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a) the standard deviation of time.
b) the standard deviation of energy.
c) a Hermitian operator.
d) the characteristic time for an observable’s value to change by one standard deviation.
e) the characteristic time for the system to do nothing.

31. The statements “two observables commute” and “a common eigenset can be constructed for two
observables” are

in flat contradiction. b) unrelated. c) in non-intersecting Venn diagrams.
d) irrelevant in relation to each other. e) are equivalent in the sense that one implies the other.

32. Recall the definition of Hermitian conjugate for a general operator Q is

〈α|Q|β〉 = 〈β|Q†|α〉∗ ,

where |α〉 and |β〉 are general vectors. If Q is Hermitian,

Q† = Q :

i.e., Q is its own Hermitian conjugate.

a) If Q is Hermitian, prove that the expectation value of a general vector |γ〉,

〈γ|Q|γ〉 ,

is pure real.

b) If the expectation value
〈γ|Q|γ〉

is always pure real for general |γ〉, prove that Q is Hermitian. The statement to be proven is the converse
of the statement in part (a). HINT: First show that

〈γ|Q|γ〉 = 〈γ|Q†|γ〉 .

Then let |α〉 and |β〉 be general vectors and construct a vector |ξ〉 = |α〉 + c|β〉, where c is a general
complex scalar. Note that the bra corresponding to c|β〉 is c∗〈β|. Expand both sides of

〈ξ|Q|ξ〉 = 〈ξ|Q†|ξ〉 ,

and then keep simplifying both sides making use of the first thing proven and the definition of a Hermitian
conjugate. It may be useful to note that

(A†)† = A and (A+B)† = A† +B† ,

where A and B are general operators and You should be able to construct an expression where choosing
c = 1 and then c = i requires Q = Q†.

c) What simple statement follows from the proofs in parts (a) and (b)?

33. Consider

Q =

(

1 1 − i
1 + i 0

)

.

In this problem, we will diagonalize this matrix: i.e., solve for its eigenvalues and eigenvectors. We also
actually explictly find the diagonal form—which is not usually necessary.

a) Is Q Hermitian?

b) Solve for the eigenvalues. Are they real?

c) Determine the normalized eigenvectors â. Since eigenvectors are not unique to within a phase factor,
the marker insists that you arrange your eigenvectors so that the first component of each is 1. Are
the eigenvectors orthogonal? HINT: The matrix equation for the eigenvectors is a homogeneous
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matrix equation with non-trivial solutions (i.e., solutions that are not just zeros) for the eigenvalues
since the determinant of Q−λI vanishes for those eigenvalues. However, 1 equation obtained from
a N×N homogeneous matrix problem is always not independent: there are only N−1 independent
equations and one can only solve for N − 1 components of the eigenvectors. So if you set the first
component of the solution vector to be 1, the N − 1 equations allow you to solve for the other
components. This solution vector is a valid solution vector, but its overall scale is arbitrary. There
is no determined scale for the eigenvectors of a homogeneous matrix problem: e.g., k times solution
vector ~a is also a solution. But, in quantum mechanics, physical vectors should be normalized and
the normalization constraint provides an Nth independent equation, and thus allows a complete
solution of the eigenvectors to within a global phase factor. Normalization doesn’t set that global
phase factor since it cancels out in the normalization equation. The global phase factor can be
chosen arbitrarily for convenience. The global phase factor of a state no effect on the physics of the
state.

d) Obtaining the eigenvalues and eigenvectors is usually all that is meant by diagonalization, but one
can actually transform the eigenvalue matrix equation into a matrix equation where the matrix is
diagonal and the eigenvectors can be solved for by inspection. One component of an eigenvector
is 1 and the other components are zero. How does one transform to diagonal form? Consider our
matrix equation

Qâ = λâ .

Multipy both sides by the transformation matrix U to obtain

UQâ = λUâ

which is obviously the same as
UQU−1Uâ = λUâ .

If we define
â′ = Uâ and Q′ = UQU−1 ,

then the transformed matrix equation is just

Q′â′ = λâ′ .

Prove that the transformation matrix U that gives the diagonalized matrix Q′ just consists of rows
that are the Hermitian conjugates of the eigenvectors. Then find the diagonalized matrix itself and
its eigenvalue.

e) Compare the determinant det|Q|, trace Tr(Q), and eigenvalues of Q to those of Q′.

f) The matrix U that we considered in part (d) is actually unitary. This means that

U † = U−1 .

Satisfy yourself that this is true. Unitary transformations have the useful property that inner
products are invariant under them. If the inner product has a physical meaning and in particular
the magnitude of vector has a physical meaning, unitary transformations can be physically relevant.
In quantum mechanics, the inner product of a normalized state vector with itself 1 and this should
be maintained by all physical transformations, and so such transformations must be unitary. Prove
that

〈a′|b′〉 = 〈a|b〉

where
|a′〉 = U |a〉|b′〉 = U |b〉

and U is unitary.

34. Consider the observable Q and the general NORMALIZED vector |Ψ〉. By quantum mechanics
postulate, the expectation of Qn, where n ≥ 0 is some integer, for |Ψ〉 is

〈Qn〉 = 〈Ψ|Qn|Ψ〉 .
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a) Assume Q has a discrete spectrum of eigenvalues qi and orthonormal eigenvectors |qi〉. It follows
from the general probabilistic interpretation postulate of quantum mechanics, that expectation
value of Qn for |Ψ〉 is given by

〈Qn〉 =
∑

i

qn
i |〈qi|Ψ〉|2 .

Show that this expression for 〈Qn〉 also follows from the one in the preamble. What is
∑

i |〈qi|Ψ〉|2
equal to?

b) Assume Q has a continuous spectrum of eigenvalues q and Dirac-orthonormal eigenvectors |q〉.
(Dirac-orthonormal means that 〈q′|q〉 = δ(q′ − q), where δ(q′ − q) is the Dirac delta function. The
term Dirac-orthonormal is all my own invention: it needed to be.) It follows from the general
probabilistic interpretation postulate of quantum mechanics, that expectation value of Qn for |Ψ〉
is given by

〈Qn〉 =

∫

dq qn|〈q|Ψ〉|2 .

Show that this expression for 〈Qn〉 also follows from the one in the preamble. What is
∫

dq |〈q|Ψ〉|2
equal to?

35. Prove the following commutator identities.

a) [A,B] = −[B,A].

b)





∑

i

aiAi,
∑

j

bjBj



 =
∑

ij

aibj [Ai, Bj ], where the ai’s and bj ’s are just complex numbers.

c) [A,BC] = [A,B]C +B[A,C].

d) [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. This has always seemed to me to be perfectly useless
however true.

e) (c[A,B])† = c∗[B†, A†], where c is a complex number.

f) The special case of the part (e) identity when A and B are Hermitian and c is pure imaginary. Is
the operator in this special case Hermitian or anti-Hermitian?

36. Prove the following somewhat more difficult commutator identities.

a) Given
[B, [A,B]] = 0 , prove [A,F (B)] = [A,B]F ′(B) ,

where A and B are general operators aside from the given condition and F (B) is a general operator
function of B. HINTS: Proof by induction is probably best. Recall that any function of an operator
is (or is that should be) expandable in a power series of the operator: i.e.,

F (B) =
∞
∑

n=0

fnB
n ,

where fn are constants.

b) [x, p] = ih−.

c) [x, pn] = ih−npn−1. HINT: Recall the part (a) answer.

d) [p, xn] = −ih−nxn−1. HINT: Recall the part (a) answer.

37. There are systems that exist apart from 3-dimensional Euclidean space: they are internal degrees of
freedom such intrinsic spin of an electron or the proton-neutron identity of a nucleon (isospin: see, e.g.,
En-162 or Ga-429). Consider such an internal system for which we can only detect two states:

|+〉 =

(

1
0

)

and |−〉 =

(

0
1

)

.

This internal system is 2-dimensional in the abstract vector sense of dimensional: i.e., it can be described
completely by an orthonormal basis of consisting of the 2 vectors we have just given. When we measure
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this system we force it into one or other of these states: i.e., we make the fundamental perturbation.
But the system can exist in a general state of course:

|Ψ(t)〉 = c+(t)|+〉 + c−(t)|−〉 =

(

c+(t)
c−(t)

)

.

a) Given that |Ψ(t)〉 is NORMALIZED, what equation must the coefficients c+(t) and c−(t) satisfy.

b) For reasons only known to Mother Nature, the states we can measure (eigenvectors of whatever
operator they may be) |+〉 and |−〉 are NOT eigenstates of the Hamiltonian that governs the time
evolution of internal system. Let the Hamiltonian’s eigenstates (i.e., the stationary states) be |+′〉
and |−′〉: i.e.,

H |+′〉 = E+|+′〉 and H |−′〉 = E−|−′〉 ,
where E+ and E− are the eigen-energies. Verify that the general state |Ψ(t)〉 expanded in these
energy eigenstates,

|Ψ(t)〉 = c+e
−iE+t/h−|+′〉 + c−e

−iE−t/h−|−′〉
satisfies the general vector form of the Schrödinger equation:

ih− ∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 .

HINT: This requires a one-line answer.

c) The Hamiltonian for this internal system has no differential operator form since there is no wave
function. The matrix form in the |+〉 and |−〉 representation is

H =

(

f g
g f

)

.

Given that H is Hermitian, prove that f and g must be real.

d) Solve for the eigenvalues (i.e., eigen-energies) of Hamiltonian H and for its normalized eigenvectors
|+′〉 and |−′〉 in column vector form.

e) Given at t = 0 that

|Ψ(0)〉 =

(

a
b

)

show that

|Ψ(t)〉 =
1√
2
(a+ b)e−i(f+g)t/h−|+′〉 +

1√
2
(a− b)e−i(f−g)t/h−|−′〉

and then show that

|Ψ(t)〉 = e−ift/h−
[

a

(

cos(gt/h−)
−i sin(gt/h−)

)

+ b

(

−i sin(gt/h−)
cos(gt/h−)

)]

.

HINT: Recall the time-zero coefficients of expansion in basis {|φi〉} are given by 〈φi|Ψ(0)〉.
f) For the state found given the part (e) question, what is the probability at any time t of measuring

(i.e., forcing by the fundamental perturbation) the system into state

|+〉 =

(

1
0

)

?

HINT: Note a and b are in general complex.

g) Set a = 1 and b = 0 in the probability expression found in the part (f) answer. What is the
probability of measuring the system in state |+〉? in state |−〉? What is the system doing between
the two states?

NOTE: The weird kind of oscillation between detectable states we have discussed is a simple model
of neutrino oscillation. Just as an example, the detectable states could be the electron neutrino and
muon neutrino and the particle oscillates between them. Really there are three flavors of neutrinos and
a three-way oscillation may occur. There is growing evidence that neutrino oscillation does happen.
(This note may be somewhat outdated due to that growth of evidence.)



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore it neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉
15
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4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ
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H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity
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En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉
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eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)
∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =
m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =
∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx
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Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n
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N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−


