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Quantum Mechanics NAME:

Homework 2a: Solving the Schrödinger’s Equation: Homeworks are not handed in or marked. But
you get a mark for reporting that you have done them. Once you’ve reported completion, you may look at
the already posted supposedly super-perfect solutions.

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 16. O O O O O

2. O O O O O 17. O O O O O
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6. O O O O O 21. O O O O O
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002 qmult 00700 1 1 4 easy memory: Schr. eqn. separation of variables
1. The time-independent Schrödinger equation is obtained from the full Schrödinger equation by:

a) colloquialism. b) solution for eigenfunctions. c) separation of the x and y variables.
d) separation of the space and time variables. e) expansion.

SUGGESTED ANSWER: (d)

Wrong Answers:
a) Huh?

Redaction: Jeffery, 2001jan01

002 qmult 00720 1 1 1 easy memory: stationary state
2. A system in a stationary state will:

a) not evolve in time. b) evolve in time. c) both evolve and not evolve in time.
d) occasionally evolve in time. e) violate the Heisenberg uncertainty principle.

SUGGESTED ANSWER: (a) The wave function itself will have the time oscillation factor eiωt,
but that is not considered time evolution of the state.

Wrong answers:
b) Exactly wrong.

Redaction: Jeffery, 2001jan01

002 qmult 00800 1 4 2 easy deducto-memory: orthogonality property
3. For a Hermitian operator eigenproblem, one can always find (subject to some qualitifications perhaps—

but which are just mathemtical hemming and hawwing) a complete set (or basis) of eigenfunctions that
are:

a) independent of the x-coordinate. b) orthonormal. c) collinear. d) pathological.
e) righteous.

SUGGESTED ANSWER: (b)

Wrong Answers:
e) Not the best answer in this context anyway.

Redaction: Jeffery, 2001jan01

002 qmult 00810 1 4 2 easy deducto-memory: basis expansion
Extra keywords: mathematical physics

4. “Let’s play Jeopardy! For $100, the answer is: If it shares the same same range as a basis set of functions
and is at least piecewise continuous, then it can be expanded in the basis with a vanishing limit of the
mean square error between it and the expansion.”

What is a/an , Alex?

a) equation b) function c) triangle d) deduction e) tax deduction

SUGGESTED ANSWER: (b) See WA-510.

Wrong answers:
e) Sounds plausible.

Redaction: Jeffery, 2008jan01

002 qmult 00820 1 4 5 easy deducto-memory: general Born postulate
Extra keywords: mathematical physics

5. “Let’s play Jeopardy! For $100, the answer is: The postulate that expansion coefficients of a wave
function in the eigenstates of an observable are the probability amplitudes for wave function collapse to
eigenstates of that observable.”

What is , Alex?
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a) the special Born postulate b) the very special Born postulate c) normalizability
d) the mass-energy equivalence e) the general Born postulate

SUGGESTED ANSWER: (e)

Wrong answers:
b) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

002 qmult 00830 1 1 4 easy memory: basis expansion physics
6. The expansion of a wave function in an observable’s basis (or complete set of eigenstates) is

a) just a mathematical decomposition. b) useless in quantum mechanics.
c) irrelevant in quantum mechanics. d) not just a mathematical decomposition since the
expansion coefficients are probability amplitudes. e) just.

SUGGESTED ANSWER: (d)

Wrong answers:
a) A nonsense answer.

Redaction: Jeffery, 2008jan01

002 qmult 00900 1 4 1 easy deducto-memory: macro object in stationary state
7. “Let’s play Jeopardy! For $100, the answer is: A state that no macroscopic system can be in except

arguably for states of Bose-Einstein condensates, superconductors, superfluids and maybe others sort
of.”

What is a/an , Alex?

a) stationary state b) accelerating state c) state of the Union d) state of being
e) state of mind

SUGGESTED ANSWER: (a)

Wrong answers:
b) Clearly wrong.
c) Well we-all are in a state of the Union.
d) Lots of macroscopic objects are real things without being Bose-Einstein condensates either.
e) I’m a macroscopic object and I’m occasionally in a state of mind, but never noticeably in

a Bose-Einstein condensate.

Redaction: Jeffery, 2001jan01

002 qmult 01000 1 1 5 easy memory: stationary state is radical
8. A stationary state is:

a) just a special kind of classical state. b) more or less a kind of classical state.
c) voluntarily a classical state. d) was originally not a classical state, but grew into one.
e) radically unlike a classical state.

SUGGESTED ANSWER: (e)

Wrong Answers:
c) Nonsense answer.
d) Nonsense answer.

Redaction: Jeffery, 2001jan01

002 qmult 01100 1 1 4 easy memory: macro system in a stationary state
9. Except arguably for certain special cases (superconductors, superfluids, and Bose-Einstein condensates),

no macroscopic system can be in a:

a) mixed state. b) vastly mixed state. c) classical state. d) stationary state.
e) state of the union.
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SUGGESTED ANSWER: (d)

Wrong answers:
b) Exactly wrong.
c) Exactly wrong too.
e) Macroscopic systems are frequently found in all 50 states of the Union and the commonwealth

of Puerto Rico too.

Redaction: Jeffery, 2001jan01

002 qmult 01400 1 4 4 easy deducto-memory: operators and Sch. eqn.
10. “Let’s play Jeopardy! For $100, the answer is: An equation that must hold in order for the non-

relativistic Hamiltonian operator and the operator ih−∂/∂t to both yield an energy expectation value
for a wave function Ψ(x, t).”

What is , Alex?

a) the continuity equation b) the Laplace equation c) Newton’s 2nd law
d) Schrödinger’s equation e) Hamiton’s equation

SUGGESTED ANSWER: (d)

Wrong answers:
c) Schrödinger’s equation is the analog to Newton’s law for quantum mechanics.
e) The two Hamilton’s equations together are equations of motion in classical mechanics that

can be used instead of Newton’s law in advanced treatments.

Redaction: Jeffery, 2001jan01

002 qmult 02000 2 1 4 moderate memory: does gravity quantize
Extra keywords: reference: Nesvizhevsky et al. 2002, Nature, 413, 297

11. Can the gravitational potential cause quantization of energy states?

a) No. b) It is completely uncertain. c) Theoretically yes, but experimentally no.
d) Experimental evidence to date (post-2001) suggests it can.
e) In principle there is no way of telling.

SUGGESTED ANSWER: (d)

Wrong Answers:
b) This used to be the right answer.
c) If so then either theory or experiment is wrong.
e) Experiments can address the issue.

Redaction: Jeffery, 2001jan01

002 qfull 00320 3 5 0 tough thinking: general time evolution equation
12. It follows from the general Born postulate that the expectation value of an observable Q is given by

〈Q〉 =

∫ ∞

−∞

Ψ∗QΨ dx .

It’s weird to call an operator an observable, but that is the convention (Co-137).

a) Write down the explicit expression for
d〈Q〉
dt

.

Recall Q in general can depend on time too.

b) Now use the Schrödinger equation

HΨ = ih−∂Ψ

∂t

to eliminate partial time derivatives where possible in the expression for d〈Q〉/dt. Remember
how complex values behave when complex conjugated. You should use the angle bracket form for
expectation values to simplify the expression where possible.
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c) The commutator of two operators A and B is defined by

[A,B] = AB −BA ,

where it is always understood that the commutator and operators are acting on an implicit general
function to the right. If you have trouble initially remembering the understood condition, you can
write

[A,B]f = (AB −BA)f ,

where f is an explicit general function. Operators don’t in general commute: i.e., [A,B] =
AB −BA 6= 0 in general. Prove





∑

i

Ai,
∑

j

Bj



 =
∑

i,j

[Ai, Bj ] .

d) Now show that d〈Q〉/dt can be written in terms of 〈i[H,Q]〉. The resulting important expression
oddly enough doesn’t seem to have a common name. I just call it the general time evolution formula.
HINTS: First, V and Ψ∗ do commute. Second, the other part of the Hamiltonian operator

T = − h−2

2m

∂2

∂x2

can be put in the right place using integration by parts and the normalization condition on the
wave function. Note T turns out to be the kinetic energy operator.

e) If d〈Q〉/dt = 0, then Q is a quantum mechanical constant of the motion. It’s weird to call an
observable (which is a operator) a constant of the motion, but that is the convention (Co-247).
Show that the operator Q = 1 (i.e., the unit operator) is a constant of the motion. What is 〈1〉?

f) Find the expression for d〈x〉/dt in terms of what we are led to postulate as the momentum operator

p =
h−
i

∂

∂x
.

The position operator x should be eliminated from the expression. HINTS: Note V and x commute,
but T and x do not. Leibniz’s formula (Ar-558) might be of use in evaluating the commutator [T, x].
The formula is

dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k
.

SUGGESTED ANSWER:

a) Behold:
d〈Q〉
dt

=

∫ ∞

−∞

[

∂Ψ∗

∂t
QΨ + Ψ∗

(

∂Q

∂t

)

Ψ + Ψ∗Q
∂Ψ

∂t

]

dx ,

where the brackets about ∂Q/∂t are to emphasis that ∂Q/∂t is the operator acting on Ψ and
one doesn’t have ∂/∂t acting on QΨ.

b) Behold:

d〈Q〉
dt

= − 1

ih−
∫ ∞

−∞

HΨ∗QΨ dx+
1

ih−
∫ ∞

−∞

Ψ∗QHΨ dx+

〈

∂Q

∂t

〉

= − 1

ih−
∫ ∞

−∞

HΨ∗QΨ dx+
1

ih−
〈QH〉 +

〈

∂Q

∂t

〉

.

c) Behold:




∑

i

Ai,
∑

j

Bj



 =
∑

i,j

AiBj −
∑

i,j

BjAi =
∑

i,j

[Ai, Bj ] .



6

d) Well the hints practically give the game away. Commuting V with Ψ∗ and using integration
by parts twice with the boundary terms at infinity vanishing by normalizability gives

d〈Q〉
dt

= − 1

ih−
∫ ∞

−∞

Ψ∗HQΨ dx+
1

ih−
〈QH〉 +

〈

∂Q

∂t

〉

=
1

h−
〈i[H,Q]〉 +

〈

∂Q

∂t

〉

.

The fact that we can do this trick with H means that H is what is called a Hermitian operator.
The reason for sticking the i inside the angle brackets is that i[H,Q] is a Hermitian operator for
Q Hermitian, but [H,Q] is not (e.g., Mo-451). It’s just nice to get the expression for d〈Q〉/dt
in terms of Hermitian operators where possible.

e) Since 1 has no explicit time dependence and obviously commutes with H , it follows from the
general time evolution expression that

d〈1〉
dt

= 0 ,

and so Q = 1 is a quantum mechanical constant of the motion The expectation value 〈1〉 is
just the total probability of finding the particle anywhere: for a normalized wave function
〈1〉 = 1. Since the total probability is a constant of the motion, a normalized wave function
stays normalized.

f) Well x doesn’t explicitly depend on t, and so ∂x/∂t = 0 and 〈∂x/∂t〉 = 0. Now

[H,x] = [T, x] = − h−2

2m

(

∂2

∂x2
x− x

∂2

∂x2

)

= − h−2

m

∂

∂x
,

where we have used Leibniz’s formula (Ar-558). It now follows that

d〈x〉
dt

=
h−
im

〈

∂

∂x

〉

=
1

m
〈p〉 ,

where

p =
h−
i

∂

∂x

is the momentum operator by postulate sort of.

Redaction: Jeffery, 2001jan01

002 qfull 00330 3 5 0 tough thinking: Ehrenfest’s theorem
Extra keywords: (Gr-17:1.12) Ehrenfest formulae

13. In one dimension, Ehrenfest’s theorem in quantum mechanics is usually taken to consist of two formulae:

d〈x〉
dt

=
1

m
〈p〉

and
d〈p〉
dt

= −
〈

∂V

∂x

〉

,

where the angle brackets indicate expectation values as usual.

a) From the general time evolution formula prove the 1st Ehrenfest formula. HINTS: Recall the general
time evolution formula in non-relativistic quantum mechanics is

d〈Q〉
dt

=

〈

∂Q

∂t

〉

+
1

h−
〈i[H,Q]〉 ,

where Q is any observable and H is the Hamiltonian:

H = T + V (x) .
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Also recall that quantum mechanical momentum operator and kinetic energy operator are given by

p =
h−
i

∂

∂x
and T = − h−2

2m

∂2

∂x2
,

respectively. Leibniz’s formula (Ar-558) might be of use in evaluating some of the commutators:

dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k
.

b) From the general time evolution formula prove the 2nd Ehrenfest formula.

c) In the macroscopic limit, the expectation values become the classical dynamical variables by the
correspondence principle (which is an auxiliary principle of quantum mechanics enunciated by Bohr
in 1920 (Wikipedia: Correspondance principle)): i.e., 〈x〉 becomes x, etc. (Note we are allowing a
common ambiguity in notation: x and p are both coordinates and, in the classical formalism, the
dynamical variables describing the particle. Everybody does this: who are we do disagree.) Find the
macroscopic limits of the Ehrenfest formulae and identify the macroscopic limits in the terminology of
classical physics.

d) If you ARE writing a TEST, omit this part.
If one combines the two Ehrenfest formulae, one gets

m
d2〈x〉
dt2

= −
〈

∂V

∂x

〉

which looks very like Newton’s 2nd law in its F = ma form for a force given by a potential. Using the
correspondence priniciple, it does become the 2nd law in the macroscopic limit. However, an interesting
question arises—well maybe not all that interesing—does the 〈x〉 (which we could call the center of the
wave packet) actually obey the 2nd law-like expression

m
d2〈x〉
dt2

= −∂V (〈x〉)
∂〈x〉 ?

To disprove a general statement, all you need to do is find one counterexample. Consider a potential
of the form V (x) = Axλ, and show that in general the 〈x〉 doesn’t obey 2nd law-like expression given
above. Then show that it does in three special cases of λ.

SUGGESTED ANSWER:

a) Well x doesn’t explicitly depend on t, and so ∂x/∂t = 0 and 〈∂x/∂t〉 = 0. Now

[H,x] = [T, x] = − h−2

2m

(

∂2

∂x2
x− x

∂2

∂x2

)

= − h−2

m

∂

∂x
,

where we have used Leibniz’s formula (Ar-558) to find that

∂2

∂x2
x = 0 + i

∂

∂x
+ x

∂2

∂x2
.

It now follows that
d〈x〉
dt

=
h−
im

〈

∂

∂x

〉

=
1

m
〈p〉 ,

where

p =
h−
i

∂

∂x

is the momentum operator.

b) Behold:

d〈p〉
dt

=
1

h−
〈i[H, p]〉 =

1

h−
〈i[V, p]〉 =

〈[

V,
∂

∂x

]〉

=

〈(

V
∂

∂x
− ∂V

∂x

)〉

= −
〈

∂V

∂x

〉

.
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c) Using the correspondence principle, the macroscopic limits of the Ehrenfest formulae are

dx

dt
v =

p

m
or p = mv

and
dp

dt
= −∂V

∂x
= F .

The first formula is just the kinematic formula for instantaneous velocity and the second, the
classical Newton’s 2nd law formula for the case that the force F is derivable from a potential.
These results imply that the macroscopic limit of quantum mechanics is classical mechanics.

Ehrenfest’s theorem allows a partial demonstration of how classical dynamics emerges
from quantum mechanics. But it’s the easy part. The hard part is the theory of wave function
collapse for which no consensus theory yet exists.

d) Actually, one would guess
〈

∂V

∂x

〉

6= ∂V (〈x〉)
∂〈x〉

in general since there is no obvious reason why the equality should hold in general. Thus the
expectation value 〈x〉 (or center of the wave packet) doesn’t obey the 2nd law-like expression.
So in this respect, there is no classical correspondence. Classical correspondence in general
only happens when we scrunch up the particle (or center of mass) wave function into in a
Dirac delta function.

To prove concretely that there is no equality in general, all one needs is a single
counterexample. Consider

V (x) = Axλ .

In this case
〈

∂V

∂x

〉

=

{

Aλ〈xλ−1〉 for λ 6= 0;
0 for λ = 0

and
∂V (〈x〉)
∂〈x〉 =

{

Aλ〈x〉λ−1 for λ 6= 0;
0 for λ = 0.

Clearly the two derivative-of-potential expressions are not equal in general since 〈xλ−1〉 6=
〈x〉λ−1 in general. However, in the special cases of λ = 0, λ = 1, and λ = 2, they are equal.
Thus in these cases the expectation value 〈x〉 does obey the 2nd law-like expression.

The λ = 2 case is noteworthy since it is the simple harmonic oscillator potential. But for
stationary states, 〈x〉 = 0. So only for mixed states would one get a non-trivial case where 〈x〉
evolves in time like a classical object in simple harmonic oscillator potential.

Redaction: Jeffery, 2001jan01

002 qfull 00400 2 3 0 moderate math: orthonormality leads to mean energy
Extra keywords: (Gr-30:2.10)

14. You are given a complete set of orthonormal stationary states (i.e., energy eigenfunctions) {ψn} and a
general wave equation Ψ(x, t) that is for the same system as {ψn}: i.e., Ψ(x, t) is detemined by the same
Hamiltonian as {ψn}. The set of eigen-energies of {ψn} are {En}. The system is bounded in space by
x = −∞ and x = ∞.

a) Give the formal expansion expression of Ψ(x, 0) (i.e., Ψ(x, t) at time zero) in terms of {ψn}. Also
give the formal expression for the coefficients of expansion cn.

b) Now give the formal expansion for Ψ(x, t) remembering that ωn = En/h−. Justify that this is the
solution of the Schrödinger equation for the initial conditions Ψ(x, 0).

c) Find the general expression, simplified as far as possible, for expectation value 〈Hℓ〉 in terms of the
expansion coefficients, where ℓ is any positive (or zero) integer. Are these values time dependent?

d) Give the special cases for ℓ = 0, 1, and 2, and the expression for the standard deviation for energy
σE . HINTS: This should be a very short answer: 3 or 4 lines.

SUGGESTED ANSWER:
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a) Behold:

Ψ(x, 0) =
∑

n

cnψn(x) ,

where

cn =

∫ ∞

−∞

ψn(x)∗Ψ(x, 0) dx .

b) Behold:

Ψ(x, t) =
∑

n

cne
−iωntψn(x) .

This solution is a sum of solutions for the Schrödinger equation for the system Hamiltonian,
and thus it is a solution too. Since it matches the initial conditions, it is the solution for those
initial conditions.

c) Behold:

〈Hℓ〉 =

∫ ∞

−∞

Ψ(x, t)∗HℓΨ(x, t) dx

=
∑

m,n

c∗mcne
−i(ωn−ωm)t

∫ ∞

−∞

ψm(x)∗Hℓψn(x) dx

=
∑

m,n

c∗mcne
−i(ωn−ωm)tEℓ

n

∫ ∞

−∞

Ψm(x)∗Ψn(x) dx

=
∑

m,n

c∗mcne
−i(ωn−ωm)tEℓ

nδm,n

=
∑

n

|cn|2Eℓ
n ,

where we used expansion and orthonormality. The time dependence has vanished for all cases
of ℓ.

d) The most interesting special cases are for normalization, energy expectation value, and second
moment of the distribution:

〈H0〉 =
∑

n

|cn|2 = 1 , 〈H〉 =
∑

n

|cn|2En , 〈H2〉 =
∑

n

|cn|2E2
n .

The energy standard deviation is given by

σE =
√

〈H2〉 − 〈H〉2 .

In fact, on any ideal measurement of energy (or ℓth power of energy) one obtains a value
En (or Eℓ

n) with a probability of |cn|2. Sometimes one hears |cn|2 called the probability
of the system being in stationary state n. This is actually a bit careless. In the standard
interpretation, the system isn’t in any particular stationary state (unless the expansion contains
only one term) before the measurement. The system is in a superposition of stationary states:
i.e., it’s partially in some number of stationary states. An ideal measurement projects the
system into (or collapses the wave function to) a particular stationary state. Actually take an
ensemble and measure any dynamical quantity (governed by some observable) and you project
the system into an eigenstate for that observable. But energy eigenstates (stationary states)
and other kinds of eigenstates do not necessarily form the same set. So how can the system be
in a stationary state and an eigenstate for some other observable at the same time? It can be
(but not necessarily is) if the Hamiltonian and the other observable commute. But in general,
they won’t.

Redaction: Jeffery, 2001jan01

002 qfull 01000 2 5 0 moderate thinking: energy and normalization
Extra keywords: (Gr-24:2.2) zero-point energy
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15. Classically E ≥ Vmin for a particle in a conservative system.

a) Show that this classical result must be so. HINT: This shouldn’t be a from-first-principles proof:
it should be about one line.

b) The quantum mechanical analog is almost the same: Ē = 〈H〉 > Vmin for any normalizable state
of the system considered. Note the equality Ē = 〈H〉 = Vmin never holds quantum mechanically.
(There is an over-idealized exception, which we consider in part (e).) Prove the inequality. HINTS:
The key point is to show that 〈T 〉 > 0 for all physically allowed states. Use integration by parts.

c) Now show that result Ē > Vmin implies E > Vmin, where E is any eigen-energy of the system
considered. Note the equality E = Vmin never holds quantum mechanically (except for the over-
idealized system considered in part (e)). In a sense, there is no rest state for quantum mechanical
particle. This lowest energy is called the zero-point energy.

d) The E > Vmin result for an eigen-energy in turn implies a 3rd result: any ideal measurement always
yields an energy greater than Vmin Prove this by reference to a quantum mechanical postulate.

e) This part is NOT to be done on EXAMS: it’s just too much (for the grader). There is actually
an exception to E > Vmin result for an eigen-energy where E = Vmin occurs. The exception
is for quantum mechanical systems with periodic boundary conditions and a constant potential.
In ordinary 3-dimensional Euclidean space, the periodic boundary conditions can only occur for
rings (1-dimensional systems) and sphere surfaces (2-dimensional systems) I believe. Since any real
system must have a finite size in all 3 spatial dimensions, one cannot have real systems with only
periodic boundary conditions. Thus, the exception to the E > Vmin result is for unrealistic over-
idealized systems. Let us consider the idealized ring system as an example case. The Hamiltonian
for a 1-dimensional ring with a constant potential is

H = − h−2

2mr2
∂2

∂φ2
+ V ,

where r is the ring radius, φ is the azimuthal angle, and V is the constant potential. Find the eigen-
functions and eigen-energies for the Schrödinger equation for the ring system with periodic boundary
conditions imposed. Why must one impose periodic boundary conditions on the solutions? What
solution has eigen-energy E = Vmin?

SUGGESTED ANSWER:

a) Classically, for a conservative system E = T + V is a constant: T is kinetic energy and V is
potential energy: and T = (1/2)mv2 ≥ 0 always, of course. Thus E ≥ V ≥ Vmin. If E = Vmin,
the system is in static equilibrium since T = 0 and F = −dV/dx = 0 for V = Vmin. Of course,
a system with T > 0 can be instantaneously at the point where V = Vmin: the particle in
this case is just passing through the equilibrium point where its acceleration is instantaneously
zero.

b) In quantum mechanics the expectation value of the kinetic energy for any wave function is
given by

〈T 〉 =

∫ ∞

−∞

Ψ∗TΨ dx =
1

2m

∫ ∞

−∞

Ψ∗p2Ψ dx =
−1

2m

∫ ∞

−∞

pΨ∗pΨ dx

=
1

2m

∫ ∞

−∞

(pΨ)∗pΨ dx

≥ 0 ,

where we have used integration by parts, the vanishing of the boundary terms, and the fact that
integrand of the penultimate line is evidently always greater than or equal to zero. Note the
above derivation demands that the boundary terms vanish and that the function is sufficiently
differentiable. The requirement of normalization and the fact that in reality all physical systems
show no discontinuities or infinities guarantees conditions of the derivation. If discontinuities
are introduced as a mathemetical idealization, then they must be treated so as to yield the
same derivation in order to be valid. For instance, the infinite square well has a discontinuity
in ∂ψ/∂x at the well walls. However, since the wave function is zero outside of the well and at
the well walls, we derive the same result as above: 〈T 〉 ≥ 0.
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The only way 〈T 〉 can be zero is if the derivative of the wave function were everywhere
zero which requires that the wave function be a constant. A constant wave function cannot
be normalized, and so is not a physically allowed wave function (except for the over-idealized
systems considered in part (e).) Ergo

〈T 〉 > 0

always. Ergo all over again
Ē = 〈H〉 > 〈V 〉 ≥ Vmin

or
Ē = 〈H〉 > Vmin

which is the result we wanted to show.

c) For a stationary state, the expectation value of the Hamiltonian is just the eigen-energy:

E = 〈H〉 .

Thus for a stationary state of eigen-energy E it follows that

E > Vmin .

d) Now for an Aristotelian syllogism:

Major premise: By quantum mechanical postulate the result of any ideal measurment of
an observable is an eigenvalue of the observable for that system. Well if the eigenvalues
form a continuum then it seems that an even ideal measurement must always be some
average of a finite range of eigenvalues. But if the measurement is ideal it must be a very
small range. The point is not cleared up in my sources.

Minor premise: All eigenvalues E obey E > Vmin.

Conclusion: All ideal measurements of energy of a quantum mechanical system yield an
energy Emeasured > Vmin.

Further Considerations:

What if the potential is time-varying? I guess the argument then is that at any instant
the potential can be treated as a constant with instant-existing eigenstates. Then again any
expectation or eigen-energy is greater than Vmin always.

Further insight into our results come from a reasoning argument. Physical states are
described by wave functions. To be physical, a wave function must be normalizable. To be
normalizable function must have some curvature. Curvature gives rise to a kinetic energy
contribution to energy expectation value unless somehow a pathological wave function can be
found where the kinetic energy contributions all cancel out. The proof done above shows that
no such pathological wave function can be found. We can further note that the classical state
of rest doesn’t exist in quantum mechanics. A stationary state may correspond to rest in some
respects, but it is radically different in other respects.

Yet more further insight into our results can come from considering the time-independent
Schrödinger equation in the form

ψ′′ =
2m

h−2 [V (x) − E]ψ .

For simplicity let ψ be a pure real stationary state as we are always free to arrange. Any
normalizable wave function must “turn over” at least once somewhere: i.e., it’s absolute value
must have a global maximum (or maybe more than one equal global maxima). Now if ψ′′ and
ψ always have the same sign and are well defined, then for ψ > 0 there can only be a minimum
and for ψ < 0 there can only be a maximum. Thus the absolute value can never have a global
maximum and the wave function cannot be normalized.

This argument gives insight, but I don’t think it is a fully convincing proof. One has to
wonder couldn’t ψ′ = ψ′′ = ψ′′′ = 0 and the nature of the stationary point be determined by
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the fourth order derivative ψ(4)? Also what if ψ′′ is undefined at maximum or minimum which
is a cusp: this happens for the wave function of a Dirac Delta function (see Gr-54). Clearly, a
wave function that somehow was normalizable with E ≤ Vmin would be pathological, but more
intricate argument is needed to show that it was impossible.

And also one can always imagine a normalizable wave function that is made of piecewise
regions that have ψ and ψ′′ always of the same sign. Maybe such wave functions can’t be
physical, but it would be tedious to argue generally enough to exclude them.

To investigate just a bit further let us consider a concrete example where V (x) goes to a
asymptotic constant Vasy for |x| large. If E < Vasy in this asymptotic limit, then

ψ(x)asy = Ce±kx ,

where C is some constant and

k =

√

2m

h−2 [Vasy − E] .

The asymptotic wave functions if they applied everywhere are clearly not normalizable. They
are allowed as the wave functions in some regimes: e.g., for x positive, Ce−kx is allowed and
for x negative, Cekx.

e) The time-independent Schrödinger equation in this case is

− h−2

2mr2
∂2ψ

∂φ2
+ V ψ = Eψ

which we can rewrite as
∂2

∂φ2
= −k2ψ ,

where

k = ±
√

2mr2

h−2 (E − V )

with E ≥ V asssumed. The normalized solutions are

ψ =
eikφ

√
2π

,

where we’ve just taken the azimuthal angle φ as the coordinate and not rφ (which would
require a normalization constant 1/

√
2πr. In order to be single-valued (which is a necessary

condition on wave functions), we must have an integer k. Let us write k as m since n is more
integerish: n is the quantum number for the eigenstates and eigenvalues. Thus

n = 0,±1,±2,±3, . . .

and the quantized eigen-energies are given by

E = V +
h−2

2mr2
n2 .

Requiring single-valuedness amounts to the same thing as requiring periodic boundary
conditions for the ring since one can choose any point on the ring as a conventional boundary.
Thus, periodic boundary conditions are required.

In the ring system, nothing forbids the n = 0. This means that we have valid eigenstate
ψ = 1/

√
2π which is a constant and the lowest eigen-energy is

E = V .

Since the potential is a constant, V = Vmin, and thus the lowest eigen-energy E equals Vmin.
This is an exception to our usual rule that the eigen-energies obey E > Vmin, but it is for an
over-idealized case.
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Note that there are solutions that are ruled out. If E−V = 0, we have the linear solution

ψ = aφ+ b ,

where a and b are constants. The solution with a = 0 is just the n = 0 solution which is
allowed. But if a 6= 0, the linear solution is not single-valued nor normalizable and must be
ruled out.

If E − V < 0, we have exponential solutions

ψ = e±κx ,

where

κ =

√

2mr2

h−2 (V − E) .

These solutions are not single-valued nor normalizable and must be ruled out.

Redaction: Jeffery, 2001jan01

002 qfull 00110 2 5 0 moderate thinking: beyond the classical turning points
16. The constant energy of a classical particle in a conservative system is given by

E = T + V .

Since classically T ≥ 0 always, a bound particle is confined by surface defined by T = 0 or E = V (~r ).
The points constituting this surface are called the turning points: a name which makes most sense in
one dimension. Except for static cases where the turning point is trivially the rest point (and maybe
some other weird cases), the particle comes to rest only for an instant at a turning point since the forces
are unbalanced there. So it’s a place where a particle “ponders for an instant before deciding where to
go next”. The region with V > E is classically forbidden. Now for most quantum mechanical potential
wells, the wave function extends beyond the classical turning point surface into the classical forbidden
zone and, in fact, usually goes to zero only at infinity. If the potential becomes infinite somewhere
(which is an idealization of course), the wave function goes to zero: this happens for the infinite square
well for instance.

Let’s write the 1-dimensional time-independent Schrödinger equation in the form

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ .

a) Now solve for ψ for the region with V > E with simplifying the assumption that V is constant in
this region.

b) Can the solutions be normalized?

c) Can the solutions constitute an entire wave function? Can they be part of a wave function? In
which regions?

d) Although we assumed constant V , what crudely is the behavior of the wave function likely to be
like the regions with V > E.

e) For typical potentials considered at our level, qualitatively what is the likelihood of finding the
particle in the classically forbidden region? Why?

SUGGESTED ANSWER:

a) Let

k2 =
2m

h−2 (V − E) ,

where we take k to be positive. Then

∂2ψ

∂x2
= k2ψ .
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The solutions are
ψ = e±kx .

b) The solutions cannot be normalized. The k solution goes to infinity at positive infinity and
the −k solution goes to infinity at negative infinity.

c) The solutions can’t be normalized, and so they can’t be entire wave functions. This is consistent
with our earlier finding—if indeed it isn’t a later finding—that E > Vmin: thus there must be
some region where E > V . But the solutions can be pieces of a wave function. In fact, just
about any piece that doesn’t include where they go infinite. The easy cases to identify are ekx

for some region extending to negative infinity and e−kx for some region extending to positive
infinity.

d) Assuming V constant is sort of likely assuming an average V . In which case our solutions are
sort of average solutions. Thus in general we’d assume that wave function decay exponentially
in regions where V > E.

e) Although quantum mechanically particles can be found in the classically forbidden region, for
the ordinary potential we’ve been considering that probability is likely to be low. The solutions
are roughly decaying exponentials in these regions. That means they must be decaying from
some high probability region that is classically allowed. Thus it is likely that the most probable
place for finding the particle is in the classically allowed regions. But there may be some weird
class of systems in which the probability of finding the particle is higher in the classically
forbidden region. I havn’t given the matter any thought.

Redaction: Jeffery, 2001jan01

002 qfull 01100 3 5 0 tough thinking: 1-d non-degeneracy
17. If there are no internal degrees of freedom (e.g., spin) and they are NORMALIZABLE, then one-

particle, 1-dimensional energy eigenstates are non-degenerate. We (that is to say you) will prove this.
Actually, we know already that any 2nd order ordinary linear differential equation has only two

linearly independent solutions (Ar-402) which means, in fact, that from the start we know there is a
degeneracy of 2 at most. Degeneracy count is the number of independent solutions. If there is more than
one independent solution, then infinitely many linear combinations of solutions have the same energy.
But in an expansion of wave function, only a set linear independent solutions is needed and thus the
number of such solutions is the physically relevant degeneracy. Of course, our proof means that one of
the linearly independent solutions is not normalizable.

a) Assume you have two degenerate 1-dimensional energy eigenstates for Hamiltonian H : ψ1 and ψ2.
Prove that ψ1ψ

′
2 − ψ2ψ

′
1 equals a constant where the primes indicate derivative with respect to

x the spatial variable. HINT: Write down the eigenproblem for both ψ1 and ψ2 and do some
multiplying and subtraction and integration.

b) Prove that the constant in part (a) result must be zero. HINT: To be physically allowable
eigenstates, the eigenstates must be normalizable.

c) Integrate the result of the part (b) answer and show that the two assumed solutions are not
physically distinct. Show for all x that

ψ2(x) = Cψ1(x) ,

where C is a constant. This completes the proof of non-degeneracy since eigenstates that differ by a
multiplicative constant are not physically (i.e., expansion) distinct. HINT: You have to show that
there is no other way than having ψ2(x) = Cψ1(x) to satisfy the condition found in the part (b)
answer. Remember the eigenproblem is a linear, homogeneous differential equation.

SUGGESTED ANSWER:

a) Assume you have two degenerate 1-d energy eigenstates for HamiltonianH : ψ1 and ψ2. Assume
they are pure real to avoid complications of complexity. It can be proven that one can always
construct a set of independent real eigenstates from a complex set (Gr-29). Then

Hψ1 = Eψ1 and Hψ2 = Eψ2 ,



15

and so
ψ2Hψ1 = ψ2Eψ1 and ψ1Hψ2 = ψ1Eψ2 .

If we subtract first from the second of these, we get

ψ1Hψ2 − ψ2Hψ1 = ψ1Tψ2 − ψ2Tψ1 = 0 ,

where T is the kinetic energy operator. Thus,

ψ1ψ
′′
2 − ψ2ψ

′′
1 = 0

which integrates to
ψ1ψ

′
2 − ψ2ψ

′
1 = Constant

which can be confirmed by differentiation.

b) To be normalizable, the energy eigenstates must be zero at infinity, and thus the constant form
the part (a) result must be zero. Thus,

ψ1ψ
′
2 − ψ2ψ

′
1 = 0 .

The derivatives ought to be zero at infinity too. I can’t see any case where it could be otherwise.
Maybe there is pathological case. But if the wave function is continuous (as we usually demand)
the derivatives can only be kinked. Thus, the derivatives really must be zero at infinity too.

Note that the free particle eigenstates (which are for zero potential) are not normalizable
at infinity and are degenerate. There are two independent eigenstates for each energy:

ψ+ =
eikx

√
2π

and ψ− =
e−ikx

√
2π

,

where

k =

√

2mE

h−2 .

Actually, any unbound particle energy eigenstates out to be oscillatory at infinity where
the potential is zero. Thus, at infinity, their energy eigenstates are also

ψ+ =
eikx

√
2π

and ψ− =
e−ikx

√
2π

,

where

k =

√

2mE

h−2 .

So these states have degeneneracy of 2 too.

c) Behold:

ψ1ψ
′
2 = ψ2ψ

′
1 ,

ψ′
2

ψ2
=
ψ′

1

ψ1
,

dψ2

ψ2
=
dψ1

ψ1
,

ln |ψ2| = ln |ψ1| + Constant ,

and finally

|ψ2| = C|ψ1| ,

where C is a positive constant and we have used

d ln |x|
dx

=
1

|x| (±1) =
1

x
,
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where the upper case is for x > 0 and the lower for x < 0. But sticking to real ψ1 and ψ2, we
avoid any problems with integrating with repect to a complex variable.

Now the general solution of any 2nd order linear differential equation solution has the
form

A1φ1(x) +A2φ2(x) ,

where A1 and A2 are constants and φ1 and φ2 are linearly independent solutions. Thus, if the
value of the solution is specified at two points, the solution is specified everywhere.

Thus, if ψ1 and ψ2 have the same sign at two points, then aside from the constant C
they are the same solutions everywhere. And if ψ1 and ψ2 have different signs at two points,
then aside from the constant −C they are the same solutions everywhere. Either way they are
physically the same solution everywhere.

Are there any other possibilities? If ψ1 and ψ2 have the same sign at one point and are
continuous as they must be to be physical solutions, then they have the same sign over a region.
If ψ1 and ψ2 have different signs at one point and are continuous as they must be to be physical
solutions, then they different signs over a region.

The upshot is that normalizable single-particle, 1-dimensional eigenstates (with no internal
degrees of freedom) are non-degenerate. Any difference by a constant between two eigenstates
does not make them phyiscally (i.e., expansion) distinct.

Could there be some pathological potential that gives a degenerate eigenstate? Doesn’t
seem likely, but in any case it would not likely turn up in nature.

Of course, if you have internal deqrees of freedom with no energy distinction in principle
like spin, then degeneracy in 1-dimension is easily obtained. In nature, I believe some
interaction always breaks spin or angular momentum degeneracy to some degree.

Redaction: Jeffery, 2001jan01



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore it neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉
17
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4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ



19

H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity
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En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉
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eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)
∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =
m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =
∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx
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Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n
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N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−


