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Quantum Mechanics NAME:

Homework 2b: Solving the Schrödinger’s Equation: Homeworks are not handed in or marked. But
you get a mark for reporting that you have done them. Once you’ve reported completion, you may look at
the already posted supposedly super-perfect solutions.

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 16. O O O O O

2. O O O O O 17. O O O O O

3. O O O O O 18. O O O O O

4. O O O O O 19. O O O O O

5. O O O O O 20. O O O O O

6. O O O O O 21. O O O O O

7. O O O O O 22. O O O O O

8. O O O O O 23. O O O O O

9. O O O O O 24. O O O O O

10. O O O O O 25. O O O O O

11. O O O O O 26. O O O O O

12. O O O O O 27. O O O O O

13. O O O O O 28. O O O O O

14. O O O O O 29. O O O O O

15. O O O O O 30. O O O O O
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1. In quantum mechanics, the infinite square well can be regarded as the prototype of:

a) all bound systems. b) all unbound systems. c) both bound and unbound systems.
d) neither bound nor unbound systems. e) Prometheus unbound.

2. In the infinite square well problem, the wave function and its first spatial derivative are:

a) both continuous at the boundaries.
b) continuous and discontinuous at the boundaries, respectively.
c) both discontinuous at the boundaries.
d) discontinuous and continuous at the boundaries, respectively.
e) both infinite at the boundaries.

3. Meeting the boundary conditions of bound quantum mechanical systems imposes:

a) Heisenberg’s uncertainty principle. b) Schrödinger’s equation. c) quantization.
d) a vector potential. e) a time-dependent potential.

4. At energies higher than the bound stationary states there:

a) are between one and several tens of unbound states. b) are only two unbound states.
c) is a single unbound state. d) are no states. e) is a continuum of unbound states.

5. “Let’s play Jeopardy! For $100, the answer is: This effect occurs because wave functions can extend
(in an exponentially decreasing way albeit) into the classically forbidden region: i.e., the region where
a classical particle would have negative kinetic energy.”

What is , Alex?

a) stimulated radiative emission b) quantum mechanical tunneling c) quantization
d) symmetrization e) normalization

6. A simple model of the outer electronic structure of a benzene molecule is a 1-dimensional infinite square
well with:

a) vanishing boundary conditions. b) periodic boundary conditions.
c) aperiodic boundary conditions. d) no boundary conditions.
e) incorrect boundary conditions.

7. You are given the time-independent Schrödinger equation

Hψ(x) =

[

− h−2

2m

∂2

∂x2
+ V (x)

]

ψ(x) = Eψ(x)

and the infinite square well potential

V (x) =
{

0 , x ∈ [0, a];
∞ otherwise.

a) What must the wave function be outside of the well (i.e., outside of the region [0, a]) in order to satisfy
the Schrödinger equation? Why?

b) What boundary conditions must the wave function satisfy? Why must it satisfy these boundary
conditions?

c) Reduce Schrödinger’s equation inside the well to an equation of the same form as the CLASSICAL
simple harmonic oscillator differential equation with all the constants combined into a factor of −k2,
where k is newly defined constant. What is k’s definition?

d) Solve for the general solution for a SINGLE k value, but don’t impose boundary conditions or
normalization yet. A solution by inspection is adequate. Why can’t we allow solutions with E ≤ 0?
Think carefully: it’s not because k is imaginary when E < 0.

e) Use the boundary conditions to eliminate most of the solutions with E > 0 and to impose quantization
on the allowed set of distinct solutions (i.e., on the allowed k values). Give the general wave function
with the boundary conditions imposed and give the quantization rule for k in terms of a dimensionless
quantum number n. Note that the multiplication of a wave function by an arbitrary global phase factor
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eiφ (where φ is arbitrary) does not create a physically distinct wave function (i.e., does not create a
new wave function as recognized by nature.) (Note the orthogonality relation used in expanding general
functions in eigenfunctions also does not distinguish eigenfunctions that differ by global phase factors
either: i.e., it gives the expansion coefficients only for distinct eigenfunctions. So the idea of distinct
eigenfunctions arises in pure mathematics as well as in physics.)

f) Normalize the solutions.

g) Determine the general formula for the eigenenergies in terms of the quantum number n.

8. Calculate 〈x〉, 〈x2〉, 〈p〉, 〈p2〉, σx, and σp for the 1-dimensional infinite square well with range [0, a].
Recall the general solution is

ψ =

√

2

a
sin(kx) =

√

2

a
sin
(nπ

a
x
)

,

where n = 1, 2, 3, . . . . Also check that the Heisenberg uncertainty principle is satisfied.

9. A particle is in a mixed state in a 1-dimensional infinite square well where the well spans [0, a] and the
solutions are in the standard form of Gr-26. At time zero the state is

Ψ(x, 0) = A [ψ1(x) + ψ2(x)] ,

where ψ1(x) and ψ2(x) are the time-independent 1st and 2nd stationary states of the infinite square
well.

a) Determine the normalization constant A. Remember the stationary states are orthonormal. Also
is the normalization a constant with time? Prove this from the general time evolution equation

d〈Q〉
dt

=

〈

∂Q

∂t

〉

+
1

h−
〈i[H,Q]〉 .

b) Now write down Ψ(x, t). Give the argument for why it is the solution. As a simplfication in the
solution use

ω1 =
E1

h−
=

h−
2m

(π

a

)2

,

where E1 is the ground state energy of the infinite square well.

c) Write out |Ψ(x, t)|2 and simplify it so that it is clear that it is pure real. Make use Euler’s formula:
eix = cosx+ i sinx. What’s different about our mixed state from a stationary state?

d) Determine 〈x〉 for the mixed state. Note that the solution is oscillatory. What is the angular
frequency wq and amplitude of the oscillation. Why would you be wrong if your amplitude was
greater than a/2.

e) Determine 〈p〉 for the mixed state. As Peter Lorre (playing Dr. Einstein—Herman Einstein,
Heidelberg 1919) said in Arsenic and Old Lace “the quick way, Chonny.”

f) Determine 〈H〉 for the mixed state. How does it compare to E1 and E2?

g) Say a classical particle had kinetic energy equal to the energy 〈H〉 found in the part (f) answer.
The particle is bounces back and forth between the walls of the infinite square well. What would
its angular frequency be in terms of ωq and the angular frequency found in the part (d) answer.

10. “Let’s play Jeopardy! For $100, the answer is: h−ω.

a) What is the energy difference between adjacent simple harmonic ocsillator energy levels, Alex?
b) What is the energy difference between adjacent infinite square well energy levels, Alex?
c) What is the energy difference between most adjacent infinite square well energy levels, Alex?
d) What is the energy difference between the first two simple harmonic ocsillator energy levels ONLY,

Alex?
e) What is the bar where physicists hang out in Las Vegas, Alex?
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11. The simple harmonic oscillator (SHO) ground state is

Ψ0(x, t) = Ae−β2x2/2−iE0t/h− ,

where

E0 =
h−ω
2

and β =

√

mω

h−
.

a) Verify that the wave function satisfies the full Schrödinger equation for the SHO. Recall that the
SHO potential is V (x) = (1/2)mω2x2.

b) Determine the normalization constant A.

c) Calculate the expectation values of x, x2, p, and p2.

d) Calculate σx and σp, and show that they satisfy the Heisenberg uncertainty principle.

12. A particle in a simple harmonic oscillator (SHO) potential has initial wave function

Ψ(x, 0) = A [ψ0 + ψ1] ,

where A is the normalization constant and the ψi are the standard form 0th and 1st SHO eigenstates.
Recall the potential is

V (x) =
1

2
mω2x2 .

Note ω is just an angular frequency parameter of the potential and not NECESSARILY the frequency
of anything in particular. In the classical oscillator case ω is the frequency of oscillation, of course.

a) Determine A assuming it is pure real as we are always free to do.

b) Write down Ψ(x, t). There is no need to express the ψi explicitly. Why must this Ψ(x, t) be the
solution?

c) Determine |Ψ(x, t)|2 in simplified form. There should be a sinusoidal function of time in your
simplified form.

d) Determine 〈x〉. Note that 〈x〉 oscillates in time. What is its angular frequency and amplitude.

e) Determine 〈p〉 the quick way using the 1st formula of Ehrenfest’s theorem. Check that the 2nd
formula of Ehrenfest’s theorem holds.

13. Say you have the potential

V (x) =

{∞ , x < 0;
1

2
mω2x2 x ≥ 0.

a) By reflecting on the nature of the potential AND on the boundary conditions, identify the set of
Schrödinger equation eigenfunctions satisfy this potential. Justify your answer. HINTS: Don’t
try solving the Schrödinger equation directly, just use an already known set of eigenfunctions to
identify the new set. This shouldn’t take long.

b) What is the expression for the eigen-energies of your eigenfunctions?

c) What factor must multiply the already-known (and already normalized) eigenfunctions you used to
construct the new set you found in part (a) in order to normalize the new eigenfunctions? HINT:
Use the evenness or oddness (i.e., definite parity) of the already-known set.

d) Show that your new eigenfunctions are orthogonal. HINT: Use orthogonality and the definite
parity of the already-known set.

e) Show that your eigenfunctions form a complete set given that the already-known set was complete.
HINTS: Remember completeness only requires that you can expand any suitably well-behaved
function (which means I think it has to be piecewise continuous (Ar-435) and square-integrable
(CT-99) satisfying the same boundary conditions as the set used in the expansion. You don’t have
to be able to expand any function. Also, use the completeness of the already-known set.
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14. The generating function method is a powerful method for obtaining the eigenfunctions of Sturm-Liouville
Hermitian operators and some of their general properties. One can possibly obtain with only moderately
arduous labor some special values, the norm value, a general series formula for the eigenfunctions, and
recurrence relations for iteratively constructing the complete set of eigenfunctions. The only problem is
who the devil thought up the generating function?

In the case of Hermite polynomials, the generating function—which may or may not have been
thought up by French mathematician Charles Hermite (1822–1901)—is

g(x, t) = e−t2+2tx =

∞
∑

n=0

Hn
tn

n!

(Ar-609ff; WA-644). The Hn are the Hermite polynomials: they are functions of x and n is their order.

Actually, the HERMITE EQUATION needs a weight function e−x2

to be put in Sturm-Liouville
self-adjoint form (Ar-426, WA-486). Alternatively, the Hermite polynomials times e−x2/2 satisfy a
Sturm-Liouville Hermitian operator equation which happens to be the time-independent Schrödinger
equation for the 1-dimensional quantum mechanical simple harmonic oscillator (Ar-612, WA-638). The
1-dimensional quantum mechanical simple harmonic oscillator is one of those few quantum mechanical
systems with an analytic solution.

NOTE: The parts of this question are independent: i.e., you should be able to do any of the parts
without having done the other parts.

a) Find the 1st recurrence relation

Hn+1 = 2xHn − 2nHn−1

by differentiating both the generating function and its and series expansion with respect to t. This
recurrence relation provides a means of finding any order of Hermite polynomial. HINT: You will
need to re-index summations and make use of the uniqueness theorem of power series.

b) Find the 2nd recurrence relation

H ′
n = 2nHn−1

by differentiating both the generating function and its and series expansion with respect to x.
HINT: You will need to re-index summations and make use of the uniqueness theorem of power
series.

c) Use the 1st recurrence relation to work out and tabulate the polynomials up to 3rd order: i.e., find
H0, H1, H2, and H3. You can find the first two polynomials (i.e., the 0th and 1st order polynomials)
needed to start the recurrence process by a simple Taylor’s series expansion of generating function.

d) Use the 1st recurrence relation to prove that the order of a Hermite polynomial agrees with its
polynomial degree (which is the degree of its highest degree term) and that even order Hermite
polynomials are even functions and the odd order ones are odd functions. The last result means
that the Hermite polynomials have definite parity (i.e., are either even or odd functions). HINT:
Use proof by induction and refer to collectively to the results to be proven as “the results to be
proven”. If you didn’t get H0 and H1 explicitly in part (c), you can assume H0 has degree 0 and
H1 has degree 1.

15. A free particle is:

a) bound. b) unbound. c) both bound and unbound. d) neither bound nor unbound.
e) neither here nor there.

16. The free particle system is one with where the potential is:

a) the simple harmonic oscillator potential (SHO). b) a quasi-SHO potential.
c) an infinite square well potential. d) a finite square well potential.
e) zero (or a constant) everywhere.

17. The general expression for the free particle energy eigenfunction in 1-dimension is:

a) eikx, where k = ±E. b) ekx, where k = ±E. c) ekx, where k = ±
√

2mE/h−2
.

d) eikx, where k = ±
√

2mE/h−2
. e) ekx2

, where k = ±
√

2mE/h−2
.
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18. The free particle energy eigenfunctions are not physical states that a particle can actually be in because
they:

a) can’t be normalized (i.e., they arn’t square-integrable).
b) can be normalized (i.e., they are square-integrable).
c) are growing exponentials.
d) don’t exist.
e) do exist.

19. The initial wave function of a free particle is

Ψ(x, 0) =

{

A , x ∈ [−a, a];
0 , otherwise,

where a and A are positive real numbers. The particle is in a completely zero potential environment
since it is a free particle.

a) Determine A from normalization.

b) Determine ψ(k) = Ψ(k, 0) the time-zero wavenumber representation of the particle state. It is the
Fourier transform of Ψ(x, 0). What is Ψ(k, t)? Sketch ψ(k). Locate the global maximum and the
zeros of ψ(k). Give the expression for the zeros (i.e., for the location of the zeros).

c) Determine the wavenumber space probability density |Ψ(k, t)|2 and show then that Ψ(k, t) is
normalized in wavenumber space. (You can use a table integral.) Sketch |Ψ(k, t)|2 and locate
the global maximum and the zeros. Give the expression for the zeros.

d) Crudely estimate and then calculate exactly σx, σk, and σp for time zero. Are the results consistent
with the Heisenberg uncertainty principle?



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material. Therefore it neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617× 10−6 eV K−1

= 1.381× 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eVÅ
h−c = 1973.27 eVÅ

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

− (x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t

Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H |Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H |ψ〉 = E|ψ〉
7



8

4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)

6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ
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H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation

δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A,F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity
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En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz |jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj ] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj ] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉
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eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L + g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)
∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1 − δm,0) +H(0)|ψ(m)

n 〉 =
m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =
∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H |φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H |φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx



13

Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En − E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j ] = δij [ai, aj ] = 0 [a†i , a

†
j ] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0| +
∞
∑

n=1

1n
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N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p,E) = ei(~p·~r−Et)/h− Ψ−(~p,E) = e−i(~p·~r−Et)/h−


