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Quantum Mechanics

Practice Final Exam 2011 May 6, Friday

NAME: SIGNATURE:
Instructions: There are 10 multiple-choice questions each worth 2 marks for a total
of 20 marks altogether. Choose the BEST answer, completion, etc., and darken fully the
appropriate circle on the table provided below. Read all responses carefully. NOTE long
detailed preambles and responses won’t depend on hidden keywords: keywords in such
preambles and responses are bold-faced capitalized.

There are THREE full answer questions each worth 10 marks for a total of 30 marks
altogether. Answer them all on the paper provided. It is important that you SHOW
(SHOW, SHOW, SHOW) how you got the answer.

This is a CLOSED-BOOK exam. NO cheat sheets allowed. An equation sheet is
provided. Calculators are permitted for calculations. Cell phones MUST be turned off.
The test is out of 50 marks altogether.

This a 50-minute test. Remember your name (and write it down on the exam too).

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 6. O O O O O

2. O O O O O 7. O O O O O

3. O O O O O 8. O O O O O

4. O O O O O 9. O O O O O

5. O O O O O 10. O O O O O
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011 qmult 00200 1 1 2 easy memory: separation of variables

1. A usual approach to getting the eigenfunctions of a Hamiltonian in multi-dimensions
is:

a) non-separation of variables. b) separation of variables.
c) separation of invariables. d) non-separation of invariables.
e) non-separation of variables/invariables.

SUGGESTED ANSWER: (b) Yes separation of variables is the conventional
name. See Ar-86.

Wrong Answers:

e) A nonsense answer

Redaction: Jeffery, 2001jan01

011 qmult 00400 1 4 2 easy deducto memory: spherical harmonics 1

2. The eigensolutions of the angular part of the Hamiltonian for the central force problem
are the:

a) linear harmonics. b) spherical harmonics. c) square harmonics.
d) Pythagorean harmonics. e) Galilean harmonics.

SUGGESTED ANSWER: (b)

Wrong Answers:

d) Legend has it that Pythagoras discovered the harmonic properties of
strings.

e) Vincenzo Galileo, father of the other Galileo, was a scientist too and
studied music scientifically.

Redaction: Jeffery, 2001jan01

011 qmult 00510 1 4 3 easy deducto-memory: s electrons

3. “Let’s play Jeopardy! For $100, the answer is: What the ℓ = 0 electrons (or zero
orbital angular momentum electrons) are called in spectroscopic notation.”

What are , Alex?

a) the Hermitian conjugates b) Herman’s Hermits c) s electrons
d) p electrons e) h electrons

SUGGESTED ANSWER: (c)

Wrong answers:

b) A British rock band of the 1960s: not the Beatles.

d) These are the ℓ = 1 electrons.

e) These are the ℓ = 5 electrons.

Redaction: Jeffery, 2001jan01

020 qmult 01000 1 4 1 easy deducto-memory: central potential
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4. “Let’s play Jeopardy! For $100, the answer is: A favored approximation in the simpler
solutions for the electronic structure of atoms in quantum mechanics.”

What is the , Alex?

a) central potential approximation b) non-central potential approximation
c) grand central approximation d) atom-approximated-as-molecule method
e) electrons-as-bosons approximation

SUGGESTED ANSWER: (a)

Wrong answers:
d) Doesn’t seem to likely to work.
e) Off hand I can’t think of a poorer approximation.

Redaction: Jeffery, 2001jan01

022 qmult 00100 1 1 3 easy memory: simplest quantum mechanical solid model
5. The simplest quantum mechanical solid model is arguably:

a) the hydrogen atom. b) the helium atom.
c) the free electron gas model. d) the infinite periodic potential model.
e) the finite periodic potential model.

SUGGESTED ANSWER: (c)

The free electron gas model of a solid was developed by Arnold Sommerfeld
(1868–1951) starting in 1927 shortly after the discovery of quantum mechanics
in 1926 or so. The free electron gas model was developed starting from Drude
classical free electron gas model. Sommerfeld was getting on in years when he
developed the free electron gas models. It’s proof that older physicists/dogs can
sometimes learn new tricks.

Wrong answers:
a) A nonsense answer.

Redaction: Jeffery, 2008jan01

022 qmult 00110 1 1 1 easy memory: infinite square boundary conditions
6. For the free electron gas model of a solid, one common simple choice of boundary

conditions is conditions.

a) infinite square well b) finite square well c) Gaussian well
d) hydrogen atom e) helium atom

SUGGESTED ANSWER: (a)

Wrong answers:
b) These can be used and must be used, I imagine, in some cases. But they are

not a simple choice.

Redaction: Jeffery, 2008jan01

022 qmult 00130 1 4 4 easy deducto-memory: periodic boundary conditions
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Extra keywords: mathematical physics
7. “Let’s play Jeopardy! For $100, the answer is: These quantum mechanical boundary

conditions for solids, also known a Born-von-Karman boundary conditions, are not
realistic in most cases. They are realistic in some cases. For example, for the dimension
of a solid that forms a closed loop: e.g., a solid that has donut shape can be have an
angular coordinate that must be periodic by symmetry over the range [0◦, 360◦]. But
whether realistic or not, it can be shown that they lead to the same average behavior
as realistic boundary conditions for macroscopically large solid samples.

Why are these boundary conditions used at all? Well for one thing they are an
ideal kind of boundary conditions that are completely independent of what the surface
behavior of solid is. Thus, they are neutral case. For another thing they are easy to
use in developments in particular when dealing with periodic potentials in a solid.”

What are boundary conditions, Alex?

a) infinite square well b) aperiodic c) Rabi-Schwinger-Baym-Sutherland
d) periodic e) relaxed

SUGGESTED ANSWER: (d)

Wrong answers:
a) Exactly wrong.
b) Exactly wrong.
c) I.I. Rabi (1898–1988), Julian Schwinger (1918–1994), Gordon Baym (circa

1935–), Peter Sutherland (circa 1945–) to well me: my Ph.D. pedigree.

Redaction: Jeffery, 2008jan01

015 qmult 00300 1 1 2 easy memory: 1st order energy correction
8. The formula

E1st
n = E(0)

n + λ〈ψ(0)
n |H(1)|ψ(0)

n 〉

is a:

a) 0th order perturbed energy. b) 1st order perturbed energy.
c) 2nd order perturbed energy. d) 1st order perturbed state.
e) 2nd order perturbed state.

SUGGESTED ANSWER: (b)

Wrong Answers:
d) Just checking if you are awake.

Redaction: Jeffery, 2001jan01

015 qmult 00400 1 4 4 easy deducto-memory: 1st order eigen state correction
9. The formula

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, except k 6=n

〈ψ(0)
k |H(1)|ψ(0)

n 〉
E

(0)
n − E

(0)
k

|ψ(0)
k 〉

is a:
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a) 0th order perturbed energy. b) 1st order perturbed energy.
c) 2nd order perturbed energy. d) 1st order perturbed state.
e) 2nd order perturbed state.

SUGGESTED ANSWER: (d)

Wrong Answers:
e) There’s only 1 power of λ in the expression.

Redaction: Jeffery, 2001jan01

015 qmult 01020 1 1 2 easy memory: 2x2 eigenvalues
10. The values

E± =
1

2

[

(H11 +H22) ±
√

(H11 −H22)2 + 4|H12|2
]

are:

a) the stationary states of a 2 × 2 Hamiltonian matrix.
b) the eigen-energies of a 2 × 2 Hamiltonian matrix.
c) the eigen-energies of a 3 × 3 Hamiltonian matrix.
d) the stationary states of a 3 × 3 Hamiltonian matrix.
e) the 1st order non-degenerate perturbation correction energies.

SUGGESTED ANSWER: (b)

Wrong answers:
c) There are only eigen-energies, and so the matrix is a 2 × 2 matrix.

Redaction: Jeffery, 2008jan01
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020 qfull 00200 1 3 0 easy math: electronic configurations to Ca
11. Write down the ground state electronic configurations of the neutral atoms from

hydrogen (element 1) to calcium (element 20).

SUGGESTED ANSWER:

Ground State Electronic Configurations of Atoms from H to Ca

Atom Electronic Configuration

H1 (1s)
He2 (1s)2

Li3 (He)(2s)
Be4 (He)(2s)2

B5 (He)(2s)2(2p)
C6 (He)(2s)2(2p)2

N7 (He)(2s)2(2p)3

O8 (He)(2s)2(2p)4

F9 (He)(2s)2(2p)5

Ne10 (He)(2s)2(2p)6

Na11 (Ne)(3s)
Mg12 (Ne)(3s)2

Al13 (Ne)(3s)2(3p)
Si14 (Ne)(3s)2(3p)2

P15 (Ne)(3s)2(3p)3

S16 (Ne)(3s)2(3p)4

Cl17 (Ne)(3s)2(3p)5

Ar18 (Ne)(3s)2(3p)6

K19 (Ar)(4s)
Ca20 (Ar)(4s)2

Redaction: Jeffery, 2008jan01

023 qfull 00140 1 3 0 easy math: the MB FD BE distributions derived
12. Consider a system consisting of quantized single-particle states and fixed

total number of particles N and fixed total energy E. We make the
approximation that particles can occupy only one single-particle state at
time: i.e., they are not in superpositions of single-particle states. The
overall microscopic state of the system is set by specifying arrangement of the
particles in the single-particle states. Note that exchanging distinct particles
changes the microscopic state and exchanging identical particles does not.

The set of single-particle states of the same energy Ei can be called an
energy level—a term which is used in different ways in different contexts.
The number of single-particle states in an energy level i is the energy level
degeneracy gi. A configuration is the set of occupation numbers {Ni} for the
energy levels of the system. The statistical weight W of a configuration is the
number of distinct microscopic states that correspond to that configuration.
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The fundamental axiom of statistical mechanics is
that in thermodynamic equilibrium all the microscopic states are equally
probable. Thermodynamic equilibrium for a system occurs when the system
is not changing thermodynamically with time at the macroscopic level. In
thermodynamic equilibrium, the initial conditions of the system no longer
determine its macroscopic behavior and their signature in the system has
been effectively erased.

The fundamental axiom implies that probability distribution for the
configuration is just the normalized statistical weights and the most probable
configuration is the one with the largest statistical weight. It turns out the
probability distribution given by the statistical weights is extremely peaked
around the most probable configuration for systems of macroscopically large
numbers of particles. The macroscopic thermodynamic equilibrium state
is essentially this most probable configuration. The natural logarithm the
statistical weight times Boltzmann’s constant k identified with the classical
entropy which maximizes for thermodynamic equilibrium. Thus we have

S = k ln(W ) .

a) The statistical weight for the configuration for a system with distinct
particles is

W = N !
∏

i

gNi

i

Ni!
.

Solve for the set of Ni that maximize the statistical weight subject to
the constraints

N =
∑

i

Ni , E =
∑

i

NiEi , Ni ≥ 0 .

For conventional reasons, the Lagrange multiplier for the particle
number constraint should be label α and that for the energy constraint
β. Use appropriate approximations to get a simple analytic formula for
a maximizing Ni in which the degeneracy gi occurs only as a leading
coefficient. What is the function with the degeneracy factor suppressed
and what is it called?

b) The statistical weight for the configuration for a system with identical
fermions is

W =
∏

i

(

gi

Ni

)

.

Repeat the requirements from part (a) for this statistical weight.

c) The statistical weight for the configuration for a system with identical
bosons is

W =
∏

i

(

gi − 1 +Ni

Ni

)

.

Repeat the requirements from part (a) for this statistical weight.
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d) The lagrange multiplier function has an uncontrained stationary point
at the maximizing values of Ni. This fact along with the 1st law of
classical thermodynamics

dE = T dS − µ dN

for the case of fixed volume but variable entropy and particle number
(T being temperature and µ being the chemical potential) and the
identificiation of entropy allows α and β to be determined in terms of
classical thermodynamics variables. Make the determinations.

SUGGESTED ANSWER:

a) It is better and conventional to find maximizing Ni for the natural
logarithm of W (i.e., for the entropy) rather than W itself. We
define

h = ln(W ) + α

(

∑

i

Ni −N

)

+ β

(

∑

i

NiEi − E

)

,

where α and β are Lagrange multipliers used handle the equality
constraints. The inequality constraint cannot be built into the
solution procedure, but can only be used to test the consistency
of the result and help eliminate unphysical results. We make the
approximation that the Ni are continuous variables in making use
of Lagrange multipliers.

Stationary points of h with respect to Nj in the range
[Nj, Nj−1] determined by the requirement

0 = h(Nj) − h(Nj − 1) .

In fact, we find only one finite, non-zero Nj value satisfying this
requirement, and so all stationary points lie in the range. Since
the Ni are actually integers there can be only one real stationary
point in the range [Nj, Nj−1], and there is no reason to believe
the continuum approximation generates others. Even if there are
multiple stationary points in the continuum approximation, they
are all the same value to within our error. Our best estimate of the
maximizing value in the continuum approximation is

Nj −
1

2
.

However the actual maximizing value must be an integer, and we
judge our best estimate to be

int(Nj) ,

where int is the function that truncates a real number to the next
lowest integer or the real number itself if it is an integer. Our Nj
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value turns out to be positive, and so the int function builds in the
constraint that Ni ≥ 0.

We prefer the just outlined procedure for finding the stationary
point to using Stirling’s approximation for the factorial functions
since that approximation fails for factorial function arguments less
than about 2. It’s also simpler I think.

Now

0 = h(Nj) − h(Nj − 1) = 0 + ln(gj) − ln(Nj) + α+ βEj

Nj = gje
α+βEj

Nj,stationary = int(gje
α+βEj ) .

The formula for maximizing occupation numbers just displayed
is useful in showing the good approximation when gje

α+βEj is
a small number of order a few or less. But the int function is
analytically intractable and the improvement it gives is not needed
for large gje

α+βEj values which turn out to be the overwhelmingly
important cases in most cases. Thus, the most useful formula for
the maximizing occupation numbers is

Ni = gie
α+βE ,

where for simplicity we use the index i and make no explicit
indication that the Ni are the maximizing values: context tells us
when they are maximizing.

If one suppresses the degeneracy factors which are system
dependent and the index i which can implicit for discrete states and
is unneeded in the continuous states approximation, one obtains

f = eα+βEi

which is called the Maxwell-Boltzmann distribution.

b) We do everything that we did in the part (a) answer, mutatis

mutandis. Now

0 = h(Nj) − h(Nj − 1) = 0 − {ln[(gj −Nj)!] − ln[(gj − (Nj − 1))!]}
− {ln(Nj !) − ln[(Nj − 1)!]} + α+ βEj

0 = ln(gj −Nj + 1) − ln(Nj) + α+ βEj

ln

(

Nj

gj −Nj + 1

)

= α+ βEj

Nj

gj −Nj + 1
= eα+βEj

Nj =
gj + 1

e−(α+βEj) + 1

Nj,stationary = int

(

gj + 1

e−(α+βEj) + 1

)

.
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The formula for maximizing occupation numbers just displayed is
useful in showing the good approximation when gj/[e

−(α+βEj) + 1]
is a small number of order a few or less. But the int function
is analytically intractable and the improvement it gives is not
needed for large gj/[e

−(α+βEj) + 1] values which turn out to be
the overwhelmingly important cases in most cases. Thus, the most
useful formula for the maximizing occupation numbers is

Ni =
gi

e−(α+βEi) + 1
,

where for simplicity we use the index i and make no explicit
indication that the Ni are the maximizing values: context tells us
when they are maximizing.

If one suppresses the degeneracy factors which are system
dependent and the index i which can implicit for discrete states and
is unneeded in the continuous states approximation, one obtains

f =
gi

e−(α+βE) + 1

which is called the Fermi-Dirac distribution. We note that in the
limit that e−(α+βEi) >> 1 the Fermi-Dirac distribution approaches
the Maxwell-Boltzmann distribution.

c) We do everything that we did in the part (a) answer, mutatis

mutandis. Now

0 = h(Nj) − h(Nj − 1) = {ln[(gj − 1 +Nj)!] − ln[(gj − 1 + (Nj − 1))!]}
− {ln(Nj !) − ln[(Nj − 1)!]} + α+ βEj

0 = ln(gj − 1 +Nj) − ln(Nj) + α+ βEj

ln

(

Nj

gj − 1 +Nj

)

= α+ βEj

Nj

gj − 1 +Nj
= eα+βEj

Nj =
gj − 1

e−(α+βEj) − 1

Nj,stationary = int

(

gj − 1

e−(α+βEj) − 1

)

.

The formula for maximizing occupation numbers just displayed is
useful in showing the good approximation when gj/[e

−(α+βEj) − 1]
is a small number of order a few or less. But the int function
is analytically intractable and the improvement it gives is not
needed for large gj/[e

−(α+βEj) − 1] values which turn out to be
the overwhelmingly important cases in most cases. Thus, the most
useful formula for the maximizing occupation numbers is

Ni =
gi

e−(α+βEi) − 1
,
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where for simplicity we use the index i and make no explicit
indication that the Ni are the maximizing values: context tells us
when they are maximizing.

If one suppresses the degeneracy factors which are system
dependent and the index i which can implicit for discrete states and
is unneeded in the continuous states approximation, one obtains

f =
gi

e−(α+βE) − 1

which is called the Bose-Einstein distribution. We note that in
the limit that e−(α+βEi) >> 1 the Bose-Einstein distribution
approaches the Maxwell-Boltzmann distribution.

d) On general path in the space of the occupation numbers N(t) (where
t is a path parameter) through the constrained stationary point
for ln(W ), the h function has an uncontrained statationary point.
Therefore,

0 =
dh

dt
=
d ln(W )

dt
+ α

dN

dt
+ β

dE

dt
,

where for notational convenience N and E are now the
unconstrained values of the total particle number and energy. The
constrained total particle number Ncon and Econ are constants
and vanish in the differentiation with respect to t. By a usual
convention of thermodynamics, we suppress the dt and write the
last expression as a differential expression with it being implicit
that the differentials stand for derivatives with respect to the path
parameter of the general path. Thus, we have

0 = d ln(W ) + αdN + β dE .

Using the entropy identification, this last expression becomes

0 = dS + kα dN + kβ dE

which rearranges to

dE = − 1

kβ
dS − α

β
dN .

From the classical 1st law of thermodynamics, we now see that

T = − 1

kβ
and µ = kTα ,

and thus that

β = − 1

kT
and α =

µ

kT
.

Redaction: Jeffery, 2008jan01
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015 qfull 01412 3 5 0 tough thinking: 2-particle Dirac delta perturbation 2
Extra keywords: (Gr-226:6.3)

13. The single-particle stationary states and eigen-energies for a 1-dimensional
infinite square well for region [0, a] are, respectively,

ψn(x) =

√

2

a
sin
(nπ

a
x
)

and En =
h−2

2m

(π

a

)2

n2 .

a) What is the expression for elementary 2-particle stationary states for
DISTINCT spinless particles of the same mass? Label the particles
1 and 2 for convenience. Label the states n and n′ for convenience
too. What is the general expression for the energy of such 2-particle
states? What are all the possible reduced energies n2 + n′2 up to 100?
These energies can be called energy levels: the levels may correspond to
more than one state. What are are degeneracies of the energy levels?
Remember the particles are DISTINCT. HINT: You are permitted
to use a computer program to generate energy levels and degeneracies.
But you can find them by hand too—a little tedious, but not hard if
you go at it systematically.

b) Now suppose we turn on a perturbation potential for the non-identical
particles of the form

H(1) = V (x1, x2) = aV0δ(x1 − x2) .

What is the expression for the diagonal matrix element

H(nn′)(nn′) = 〈ψnn′(x1, x2)|H(1)|ψnn′(x1, x2)〉 ?

If you expand sine functions in exponentials evaluating, the matrix
element is pretty easy, but you do have to treat the cases where n 6= n′

and n = n′ a bit differently.
Can you do perturbation theory on all the 2-particle states?

c) What is the expression for elementary 2-particle stationary states if
we replace the distinct particles by identical spinless bosons? What
is the general expression for the energy of such 2-particle states? (we
have turned off the perturbation potential.) What are all the possible
reduced energies n2 +n′2 up to 100? These energies can be called energy
levels: the levels may correspond to more than one state. What are are
degeneracies of the energy levels? HINT: You don’t have to do part (a)
all over again, just mutatis mutandis it.)

d) Now suppose we turn on a perturbation potential of part (b) for the
identical bosons. What is the expression for the diagonal matrix element

H(nn′)(nn′) = 〈ψnn′(x1, x2)|H(1)|ψnn′(x1, x2)〉 ?

If you expand sine functions exponentials evaluating, the matrix element
is pretty easy, but you do have to treat the cases where n 6= n′ and n = n′
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a bit differently. Note the perturbation correction is a bit different from
the distinct particle case. Why?

Can you do perturbation theory on all the 2-particle states?

e) What is the expression for elementary 2-particle stationary states if the
2 particles identical fermions with the same spin coordinate. Since the
spin coordinates are identical, the spin part of the single-particle states
are symmetrical. Don’t bother writing down spinors or such. What is
the general expression for the energy of such 2-particle states? What
are all the possible reduced energies n2 + n′2 up to 100? HINT: You
don’t have to do part (a) all over again, just mutatis mutandis it.)

f) Now suppose we turn on a perturbation potential of part (b) for the
identical fermions. What is the expression for the diagonal matrix
element

H(nn′)(nn′) = 〈ψnn′(xa, xb)|H(1)|ψnn′(xa, xb)〉 .

Don’t whine: this is easy if you see the trick. Why do you get the simple
result you get?

Can you do perturbation theory on all the 2-particle states?

g) What does the Dirac delta potential

V (xa − xb) = aV0(xa − xb)

imply or do physically?

SUGGESTED ANSWER:

a) Behold:

ψ(xa, xb) = ψn(xa)ψn′(xb) and En,n′ =
h−2

2m

(π

a

)2

(n2 + n′2) .

I’ve put the table of reduced energy levels and degeneracies
below all the parts of the question. Levels with different n and n′ are
double degenerate since two states correspond to these levels. But
levels with n = n′ have degeneracy 1: i.e., they are not degenerate.
Note there are 3 accidental degeneracies where distinct pairs of n
and n′ result in the same energy. These accidental degeneracies
coould be combined and their degeneracies added, but it’s useful to
see them separated as long as we recognize what they are. There are
38 distinct energy levels not combining the accidental degeneracies.
If we combined the accidential degeneracies, there are 35 distinct
energy levels.

b) Behold:

H(nn′)(nn′) = 〈ψnn′(x1, x2)|H(1)|ψnn′(x1, x2)〉

=

∫ a

0

∫ a

0

ψnn′(x1, x2)
∗aV0δ(x1 − x2)ψnn′(x1, x2) dx1 dx2
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= aV0

∫ a

0

ψnn′(x, x)∗ψnn′(x, x) dx

= aV0

(

2

a

)2 ∫ a

0

(

eikx − e−ikx

2i

)2
(

eik′x − e−ik′x

2i

)2

dx

= V0
1

4a

∫ a

0

(

e2ikx + e−2ikx − 2
)

(

e2ik′x + e−2ik′x − 2
)

dx

= V0
1

4a

{

4a, n 6= n′

(4 + 2 + 2) a, n = n′

= V0

{

1, n 6= n′

2, n = n′ ,

where we got the penultimate line by pure staring at the
antepenultimate line.

We can do perturbation theory. But those states that are
degenerate require a diagonalization among themselves in order to
obviate infinities.

c) Behold:

ψ(x1, x2) =
1

√

2(1 + δnn′)
[ψn(x1)ψn′(x2) + ψn(x2)ψn′(x1)]

and

En,n′ =
h−2

2m

(π

a

)2

(n2 + n′2) .

The energy levels are the same as for distinct particles. Only
the degeneracies are different. All energy levels are non-degenerate,
except for the 3 cases accidental degeneracy. If those levels are
combined, they are all doubly degenerate. The reason for the
reduction in degeneracies from the distinct particle cases is that
particles 1 and 2 in single-particle states n and n′ is NOT a different
total state from particles 2 and 1 in single-particle states n and n′.

d) The diagonal matrix element is identical to that in part (b), except
there is an extra factor of 2 for the case where n 6= n′. Thus

H(nn′)(nn′) = 2V0

for all a cases.
The extra factor of arises because for the Dirac delta function

gives

ψnn′(x, x)2 =
4

2(1 + δnn′)
ψn(x)2ψn′(x)2

in the integrand. That extra factor of 2 cancels out for n = n′,
but not for n 6= n′. The factor of 2 is a reflection of the exchange
force attraction between bosons. Symmetrization makes spinless
bosons closer than they would otherwise be. Since our Dirac delta
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function potential only gives a contribution for when the particles
have the probability of being in the same place: clumping the
particles together will increase the contribution.

We can do perturbation theory. But those states that are
degenerate require a diagonalization among themselves in order
to obviate infinities. But for bosons, we only have the accidental
degeneracies to deal with

e) Behold:

ψ(x1, x2) =
1√
2

[ψn(x1)ψn′(x2) − ψn(x2)ψn′(x1)] ,

where the state with n = n′ is not allowed by the Pauli exclusion
principle (which is a consequence of the symmetrization rule). The
energies of the states are

En,n′ =
h−2

2m

(π

a

)2

(n2 + n′2) .

The energy levels are the same as for distinct particles, except
that there are 6 levels that ruled out by the Pauli exclusion
principle. All energy levels are non-degenerate, except for the
2 cases accidental degeneracy. There are only 2 accidental
degeneracy cases now since one case of the accidental degeneracies
for distinct particles and bosons is eliminated by the Pauli exclusion
principle. If those accidental degeneracy levels are combined, they
are all doubly degenerate. The main reason for the reduction in
degeneracies relative to the distinct particle case is that particles 1
and 2 in single-particle states n and n′ is NOT a different total
state from particles 2 and 1 in single-particle states n and n′.

f) The diagonal matrix element is always zero for the fermions with
identical spin coordinates. The zeros arise because for the Dirac
delta function gives

ψ(x, x) = 0

in the integrand. The reason is that identical fermions with the
same spin have zero probability of being in the same place because of
the antisymmetrization of the wave function. Spatial antisymmetry
makes fermions farther than they would otherwise be. Since our
Dirac delta function potential only gives a contribution for when the
particles have the probability of being in the same state: forbidding
the particles from being the same place kills the contribution.

In fact the Dirac delta perturbation cannot affect the system
at all in this case. The off-diagonal matrix elements are all zero too.
Sort of makse sense: a potential that only acts when the particles
have a probability of being in one place can’t have an effect on a
system where the particles have zero probability of being one place.
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So one cannot do perturbation theory for this case, but there is no
need to since effectively there is no perturbation.

g) Classically, the Dirac delta function potential only turns on when
the particles are in the same place. It can be attractive (energy
lowering) or repulsive (energy raising). In quantum mechanics,
the Dirac delta function potential only makes a contribution for
the probability density of the particles being in the same place.
Now you may object that the volume of parameter space where
the particles are in the same place is zero. But the Dirac delta
function rises to infinity, and so even a volume zero makes a non-
zero contribution. In reality there probably are no Dirac delta
function potentials, but there some very sharply peaked ones. Such
potentials act over a small distance and are not infinitely high: thus
there is a finite volume in parameter space in which the particles
can interact through the potential. They are attracted or repulsed
depending on the sign of V0.

Let’s go a bit beyond the required answer.
You may ask yourself—but probably not—what is the

probability that the two distinct particles are within dx of each
other. Let’s consider the non-identical particles for simplicity. The
joint probability density for the two particles is

ρ(x1, x2) dx1 dx2 .

We have to integrate ρ(x1, x2) along the diagonal in in the x1-x2

plane. We get
√

2

{

1/a , n 6= n′;
2/a , n = n′.

.

This is result is just the part (b) answer divided by V0a to
remove the potential and multiplied by

√
2 which is to account

for integration along the diagonal. The probability of being in a
band dz in width about the diagonal neglecting the end effects and
the variation in ρ(xa, xb) perpendicular to the diagonal is

dP (dz) = dz
√

2

{

1/a , n 6= n′;
2/a , n = n′.

Now for a point on the edge of the band

dx = xa − xb = x
√

2 +
dz/2√

2
−
(

x
√

2 − dz/2√
2

)

=
dz√

2
,

and thus dz =
√

2 dx for any point x where the perpendicular
crosses the diagonal. A diagram would help. Thus the probability
of find both particles with dx of each other (neglecting the end
effects and the variation in ρ(x1, x2) perpendicular to the diagonal)
is

dP (dx) = dx 2

{

1/a , n 6= n′;
2/a , n = n′.
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Since this probability is approximate, it can’t be normalized: it is
valid though for dx << a. (I think I did this right.)

The rest of this makes me feel wuzzy right now, and so I leave
correcting it sine die.

Now what if you add a short-range potential

V (y) = Vcf(y) ,

where y = |xa − xb|, Vc is the potential when y = 0, and f(y) is
scaling rule for the potential that goes to zero as y → ∞. Now

I = 2

∫ ∞

0

V (y) dy = VcC ,

where the 2 accounts for the xa − xb < 0 and xa − xb > 0 cases
and C a constant with units of length. Let’s assume that we the y
region over which f(y) is significant is so small that we can always
approximate the probability density as a constant there. We can
then approximate

V (y) = Vcf(y)

by
V (y) = VcCδ(y) .

If we use this version of the Dirac delta potential instead of the
previous one we get

H(nn′)(nn′) = VcC

{

1/a, n 6= n′;
3/(2a), n = n′.

Thus we recoginze that V0a = VcC. Actually there seems no good
reason to parameterized the potential in terms of a since that is a
length scale of the infinite square well and not of the perturbation
potential itself. Now for consistency between this paragraph and
the last one, what if

V (y) = Vc

{

1, y ≤ s;
0, y > s,

where s is the width of the potentential. In this case C = 2s, and
so

H(nn′)(nn′) = Vc(2s)

{

1/a, n 6= n′;
3/(2a), n = n′.

The s corresponds to dx in the last paragraph expression. Thus
if the particles are within s = dx of each other there is an extra
potential contribution with height Vcm. This all seems right to me:
how do you all feel about it?

Table of Energy Levels
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L. No. n n′ Ered Non-Id. Id. Bo. Id. Fe. L. No. n n′ Ered Non-Id. Id. Bo. Id. Fe.
Deg. Deg. Deg. Deg. Deg. Deg.

1 1 1 2 1 1 0 20 4 6 52 2 1 1
2 1 2 5 2 1 1 21 2 7 53 2 1 1
3 2 2 8 1 1 0 22 3 7 58 2 1 1
4 1 3 10 2 1 1 23 5 6 61 2 1 1
5 2 3 13 2 1 1 24 1 8 65 2 1 1
6 1 4 17 2 1 1 25 4 7 65 2 1 1
7 3 3 18 1 1 0 26 2 8 68 2 1 1
8 2 4 20 2 1 1 27 6 6 72 1 1 0
9 3 4 25 2 1 1 28 3 8 73 2 1 1

10 1 5 26 2 1 1 29 5 7 74 2 1 1
11 2 5 29 2 1 1 30 4 8 80 2 1 1
12 4 4 32 1 1 0 31 1 9 82 2 1 1
13 3 5 34 2 1 1 32 2 9 85 2 1 1
14 1 6 37 2 1 1 33 6 7 85 2 1 1
15 2 6 40 2 1 1 34 5 8 89 2 1 1
16 4 5 41 2 1 1 35 3 9 90 2 1 1
17 3 6 45 2 1 1 36 4 9 97 2 1 1
18 1 7 50 2 1 1 37 7 7 98 1 1 0
19 5 5 50 1 1 0 38 6 8 100 2 1 1

Note—For non-identical particles interchanging the distinct
values n and n′ between the particles creates a different state.
We merely note that those cases exist and the energy level has
a degeneracy of 2 as indicated in the table. For identical particles
interchanging the values of n and n′ does not create a different state.
Thus for bosons the degeneracy is always 1 for each energy level.
For fermions, if n = n′ no state is allowed by the Pauli exclusion
principle and the degeneracy is zero. There are energy levels below
100 that have one of n or n′ greater than 7. I have included these
for completeness. Note that there are three pairs of energy levels
with each one of the pair having the same reduced energies: 50,
65, and 85. These pairs should be combined, but that is tricky to
computationally and it is convenient to see them separately. These
pairs are examples of accidental degeneracies: different pairs of n
and n′ leading to the same energy. For each accidental degeneracy
we could create one combined energy level: the degeneracies of the
pairs just add.

Fortran 95 Code
!23456789a123456789b123456789c123456789d123456789e123456789f123456789g12

!

! State determines the reduced energies and

degeneracies for

! 2 non-interacting particles in an infinite square

well.

!
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!

program state

implicit none

!

integer, parameter :: ndble=kind(0.d0)

integer, parameter :: nprecision=ndble

integer, parameter :: nemax=100

!

integer :: i,j

integer :: ien(nemax,6)

integer :: iorder(nemax)

integer :: istate

integer :: itmp

integer :: nmax

!

nmax=ceiling(sqrt(real(nemax,nprecision)))

!

istate=0

do410: do i=1,nmax

do420: do j=i,nmax

itmp=i**2+j**2

if(itmp .gt. nemax) exit do420

istate=istate+1

ien(istate,1)=itmp

ien(istate,2)=i

ien(istate,3)=j

ien(istate,5)=1 ! identical bosons

if(i .ne. j) then

ien(istate,4)=2 ! distinct

particles.

ien(istate,6)=1 ! identical fermions

else

ien(istate,4)=1 ! distinct

particles.

ien(istate,6)=0 ! identical

fermions.

end if

end do do420

end do do410

!

print*,’Before order.’

call order(istate,ien(1,1),iorder)

print*,’After order.’

!

if(mod(itmp,2) .eq. 0) then

itmp=istate/2

else
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itmp=istate/2+1

ien(istate+1,1:6)=0

end if

!

print*

do430: do i=1,istate

print910,i,ien(iorder(i),2),ien(iorder(i),3),ien(iorder(i),1),

&

&

ien(iorder(i),4),ien(iorder(i),5),ien(iorder(i),6)

end do do430

!

print*

write(*,910)

&

&

(i,ien(iorder(i),2),ien(iorder(i),3),ien(iorder(i),1),

&

&

ien(iorder(i),4),ien(iorder(i),5),ien(iorder(i),6),

&

&

i+itmp,ien(iorder(i+itmp),2),ien(iorder(i+itmp),3),

&

& ien(iorder(i+itmp),1),

&

&

ien(iorder(i+itmp),4),ien(iorder(i+itmp),5),

&

& ien(iorder(i+itmp),6),

& i=1,itmp)

!

910 format((i3,13(’&’,i3)),’\\cr’) ! For some

reason, the

! ! brackets are

needed.

!

end program state

!

!23456789a123456789b123456789c123456789d123456789e123456789f123456789g12

!

! A bubble sort. Bubble sorts are very inefficient,

but they

! are easy to code and remember.

!

subroutine order(istate,ien,iorder)
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implicit none

integer :: i,j

integer :: ien(istate)

integer :: iorder(istate)

integer :: istate

integer :: itmp

!

! print*,istate

!

do410: do i=1,istate

iorder(i)=i

! print*,i,ien(i)

end do do410

!

do420: do i=istate,2,-1

do430: do j=2,i

if(ien(iorder(j-1)) .gt. ien(iorder(j))) then

itmp=iorder(j-1)

iorder(j-1)=iorder(j)

iorder(j)=itmp

end if

end do do430

end do do420

!

! do i=1,istate

! write(*,*) i,ien(i),iorder(i),ien(iorder(i))

! write(*,’(3i5)’) i,ien(i),ien(iorder(i))

! end do

!

end subroutine order

!

!23456789a123456789b123456789c123456789d123456789e123456789f123456789g12

Redaction: Jeffery, 2001jan01



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing
material. Therefore it neither intended to be complete nor completely explicit.
There are fewer symbols than variables, and so some symbols must be used for
different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617 × 10−6 eV K−1

= 1.381 × 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eV Å
h−c = 1973.27 eV Å

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

−(x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t22
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Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H|Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H|ψ〉 = E|ψ〉

4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)
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6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ

H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation
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δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A, F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities
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σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2

11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)
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Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz|jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{ x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z
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J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)

|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉

eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)
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µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L+ g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−

16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)

∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1−δm,0)+H(0)|ψ(m)

n 〉 =

m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =

∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉
∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H|φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H|φj〉 H~c = E~c
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17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx

Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En −E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization

kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j] = δij [ai, aj] = 0 [a†i , a

†
j] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps
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[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉

1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0|+
∞
∑

n=1

1n

N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )
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22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p, E) = ei(~p·~r−Et)/h− Ψ−(~p, E) = e−i(~p·~r−Et)/h−


