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Quantum Mechanics

Practice Exam 2011 March 4, Friday

NAME: SIGNATURE:
Instructions: There are 10 multiple-choice questions each worth 2 marks for a total
of 20 marks altogether. Choose the BEST answer, completion, etc., and darken fully the
appropriate circle on the table provided below. Read all responses carefully. NOTE long
detailed preambles and responses won’t depend on hidden keywords: keywords in such
preambles and responses are bold-faced capitalized.

There are THREE full answer questions each worth 10 marks for a total of 30 marks
altogether. Answer them all on the paper provided. It is important that you SHOW
(SHOW, SHOW, SHOW) how you got the answer.

This is a CLOSED-BOOK exam. NO cheat sheets allowed. An equation sheet is
provided. Calculators are permitted for calculations. Cell phones MUST be turned off.
The test is out of 50 marks altogether.

This a 50-minute test. Remember your name (and write it down on the exam too).

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 6. O O O O O

2. O O O O O 7. O O O O O

3. O O O O O 8. O O O O O

4. O O O O O 9. O O O O O

5. O O O O O 10. O O O O O
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011 qmult 00100 1 4 3 easy deducto-memory: central force
1. A central force is one which always points radially inward or outward from a fixed

point which is the center of the central force. The magnitude of central force depends
only on:

a) the angle of the particle.
b) the vector ~r from the center to the particle.
c) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e) the uncertainty principle.

SUGGESTED ANSWER: (c)

Wikipedia confirms this definition of a central force. Mathemetically, one
can write the force

~F (~r ) = F (r)r̂ .

But what would a force like

~F (~r ) = F (~r )r̂

be called. It’s not officially a central force since the magnitude depends on
direction. But its torque about the center is also zero, and so it conserves angular
momentum. Perhaps, such forces are rare, and therefore not much studied.

Wrong Answers:
a) Nah.
b) Exactly wrong.

Redaction: Jeffery, 2001jan01

011 qmult 00210 1 1 3 easy memory: separation of variables 2
2. Say you have a differential equation of two independent variables x and y and you

want to look for solutions that can be factorized thusly f(x, y) = g(x)h(y). Say then
it is possible to reorder equation into the form

LHS(x) = RHS(y) ,

where LHS stands for left-hand side and RHS for right-hand side. Well LHS is
explicitly independent of y and implicitly independent of x:

∂LHS

∂y
= 0 and

∂LHS

∂x
=
∂RHS

∂x
= 0 .

Thus, LHS is equal to a constant C and necessarily RHS is equal to the same constant
C which is called the constant of separation (e.g., Arf-383). The solutions for g(x) and
h(y) can be found separately and are related to each other through C. The solutions
for f(x, y) that cannot be factorized are not obtained, of course, by the described
procedured. However, if one obtains complete sets of g(x) and h(y) solutions for the
x-y region of interest, then any solution f(x, y) can be constructed at least to within
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some approximation (Arf-443). Thus, the generalization of the described procedure is
very general and powerful. It is called:

a) separation of the left- and right-hand sides. b) partitioning.
c) separation of the variables. d) solution factorization.
e) the King Lear method.

SUGGESTED ANSWER: (c)

In quantum mechanics, it is a postulate that a complete set of eigenstates
exists for any observable and that any physical state defined for the same space
as the observable can be expanded exactly in those eigenstates in principle. The
whole paradigm of quantum mechanics relies on this postulate—and quantum
mechanics has never failed.

Wrong answers:
d) Seems reasonable.
e) Metaphorical names due turn up in physics like the Monte Carlo method

(named after a famous casino in Monaco) and the Urca process (named after
a casino in Rio de Janeiro). One sometimes gets the feeling that theoretical
physicists spend a lot of time in casinos. I used to wander through them all
the time in my Vegas years.

Redaction: Jeffery, 2008jan01

011 qmult 00300 1 4 2 easy deducto-memory: relative/cm reduction
3. “Let’s play Jeopardy! For $100, the answer is: By writing the two-body Schrödinger

equation in relative/center-of-mass coordinates.”

How do you , Alex?

a) reduce a ONE-BODY problem to a TWO-BODY problem
b) reduce a TWO-BODY problem to a ONE-BODY problem
c) solve a one-dimensional infinite square well problem
d) solve for the simple harmonic oscillator eigenvalues
e) reduce a TWO-BODY problem to a TWO-BODY problem

SUGGESTED ANSWER: (b)

Wrong answers:
e) Seems a bit pointless.

Redaction: Jeffery, 2001jan01

011 qmult 00310 1 4 4 easy deducto-memory: reduced mass
4. The formula for the reduced massm for two-body system (with bodies labeled 1 and 2)

is:

a) m = m1m2. b) m =
1

m1m2
. c) m =

m1 +m2

m1m2
. d) m =

m1m2

m1 +m2
.

e) m =
1

m1
.

SUGGESTED ANSWER: (d)
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Wrong Answers:

a) Dimensionally wrong.

b) Dimensionally wrong.

c) Dimensionally wrong.

e) Dimensionally wrong and it only refers to one mass.

Redaction: Jeffery, 2001jan01

011 qmult 00400 1 4 2 easy deducto memory: spherical harmonics 1

5. The eigensolutions of the angular part of the Hamiltonian for the central force problem
are the:

a) linear harmonics. b) spherical harmonics. c) square harmonics.
d) Pythagorean harmonics. e) Galilean harmonics.

SUGGESTED ANSWER: (b)

Wrong Answers:

d) Legend has it that Pythagoras discovered the harmonic properties of
strings.

e) Vincenzo Galileo, father of the other Galileo, was a scientist too and
studied music scientifically.

Redaction: Jeffery, 2001jan01

011 qmult 00420 1 4 3 easy deducto memory: spherical harmonic Y00

6. Just about the only spherical harmonic that people remember—and they really should
remember it too—is Y00 =:

a) eimφ. b) r2. c)
1√
4π

. d) θ2. e) 2a−3/2e−r/a.

SUGGESTED ANSWER: (c)

Wrong Answers:

a) This is the general azimuthal component of the spherical harmonics:
m = 0,±1,±2, . . .

b) This is radial and it’s not normalizable.

d) Except for Y00 itself, the spherical harmonics are all combinations of
sinusoidal functions of the θ and φ.

e) This is the R10 hydrogenic radial wave function where a is the scale
radius

a = a0
me

m

1

Z
,

where me is the electron mass, m is the reduced mass, Z is the number
of unit charges of the central particle, and a0 is the Bohr radius (Gr2005-
137). The Bohr radius in MKS units is given by

a0 =
h−2

me[e2/(4πε0)]
=
λC

2π

1

α
= 0.52917720859(36) Å ,
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where e is the elementary charge, λC = h−/(mec) is the Compton
wavelength, and α ≈ /137 is the fine structure constant.

Redaction: Jeffery, 2001jan01

011 qmult 00500 1 4 2 easy deducto-memory: spdf designations
7. Conventionally, the spherical harmonic eigenstates for angular momentum quantum

numbers

ℓ = 0, 1, 2, 3, 4, ...

are designated by:

a) a, b, c, d, e, etc.
b) s, p, d, f , and then alphabetically following f : i.e., g, h, etc.
c) x, y, z, xx, yy, zz, xxx, etc.
d) A, C, B, D, E, etc.
e) $@%&*!!

SUGGESTED ANSWER: (b)

Wrong Answers:
a) This is the way it should be, not the way it is.
e) Only in Tasmanian devilish.

Redaction: Jeffery, 2001jan01

019 qmult 00110 1 1 3 easy memory: exchange degeneracy and symmetrization principle
8. As strange as the symmetrization principle seems at first, quantum mechanics would

be inconsistent without it since then you could create infinitely many physically
distinct states by superpositions of the same state. This inconsistency is called the:

a) symmetrization paradox. b) symmetrization degeneracy.
c) exhcange degeneracy. d) baffling degeneracy. e) baffling paradox.

SUGGESTED ANSWER: (c)

Wrong answers:
e) By Gad, Holmes, baffled again.

Redaction: Jeffery, 2008jan01

020 qmult 00100 1 1 1 easy memory: atom defined
9. An atom is a stable bound system of electrons and:

a) a single nucleus. b) two nuclei. c) three nuclei. d) a single quark.
e) two quarks.

SUGGESTED ANSWER: (a)

Wrong Answers:
b) This is a diatomic molecule.

Redaction: Jeffery, 2001jan01
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020 qmult 01000 1 4 1 easy deducto-memory: central potential
10. “Let’s play Jeopardy! For $100, the answer is: A favored approximation in the simpler

solutions for the electronic structure of atoms in quantum mechanics.”

What is the , Alex?

a) central potential approximation b) non-central potential approximation
c) grand central approximation d) atom-approximated-as-molecule method
e) electrons-as-bosons approximation

SUGGESTED ANSWER: (a)

Wrong answers:
d) Doesn’t seem to likely to work.
e) Off hand I can’t think of a poorer approximation.

Redaction: Jeffery, 2001jan01
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011 qfull 00100 2 5 0 moderate thinking: 2-body reduced to 1-body problem
Extra keywords: (Gr-178:5.1)

11. The 2-body time-independent Schrödinger equation is

− h−2

2m1
∇2

1ψ − h−2

2m2
∇2

2ψ + V ψ = Etotalψ .

If the V depends only on ~r = ~r2 − r1 (the relative vector), then the problem can
be separated into two problems: a relative problem 1-body equivalent problem and a
center-of-mass 1-body equivalent problem. The center of mass vector is

~R =
m1~r1 +m2~r2

M
,

where M = m1 +m2.

a) Determine the expressions for ~r1 and ~r2 in terms of ~R and ~r.

b) Determine the expressions for ∇2
1 and ∇2

2 in terms of ∇2
cm (the center-of-mass

Laplacian operator) and ∇2 (the relative Laplacian operator). Then re-express
the kinetic operator

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2

in terms of ∇2
cm and ∇2. HINTS: The x, y, and z direction components of

vectors can all be treated separately and identically since x components of ~R and
~r) (i.e., X and x) depend only on x1 and x2, etc. You can introduce a reduced
mass to make the transformed kinetic energy operator simpler.

c) Now separate the 2-body Schrödinger equation assuming V = V (~r ) + Vcm(~R ).

What are the solutions of the center-of-mass problem if Vcm(~R) = 0? How would
you interpret the solutions of the relative problem? HINT: I’m only looking for
a short answer to the interpretation question.

SUGGESTED ANSWER:

a) Well substituting for ~r2 using the relative expression gives

~R =
m1~r1 +m2~r2

M
= ~r1 +

m2

M
~r ,

and so

~r1 = ~R − m2

M
~r

and

~r2 = ~R +
m1

M
~r .

b) Well
∂

∂x( 1

2 )
=

∂X

∂x( 1

2 )

∂

∂X
+

∂x

∂x( 1

2 )

∂

∂x
=
m( 1

2
)

M

∂

∂X
∓ ∂

∂x
.
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Thus
∂2

∂x2

( 1

2
)

=

[m( 1

2
)

M

]2
∂2

∂X2
+

∂2

∂x2
∓ 2

m( 1

2
)

M

∂

∂X

∂

∂x
.

The other coordinate directions are treated identically mutatis mutandis. We
then find that

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2 = − h−2

M
∇2

cm − h−2

2

(

1

m1
+

1

m2

)

∇2 = − h−2

2M
∇2

cm − h−2

2m
∇2 ,

where define the reduced mass by

1

m
=

1

m1
+

1

m2
or m =

m1m2

m1 +m2
.

The symbol µ is often used for reduced mass, but I think that is unnecessarily
obscure myself. Note

1

m
≥ 1

mi
,

where i stands for 1 or 2 and equality only holds if the dropped mass is
infinite. Thus

m ≤ mi or m ≤ min(m1, m2) .

If m1 = m2, then

m =
m1

2
.

If m1/m2 < 1, then one can expand the reduced mass expression in the
power series (e.g., Ar-238)

m =
m1

1 +m1/m2
= m1

∑

k

(−1)k

(

m1

m2

)k

≈ m1

(

1 − m1

m2

)

,

where the last expression holds for m1/m2 << 1.

c) We make the anzatz that we can set

ψtotal(~r1, ~r 2) = ψcm(~R )ψ(~r) .

The Schrödinger equation can then be written at once as

− h−2

2M

∇2
cmψcm(~R )

ψ(~R )
− h−2

2m

∇2ψ(~r )

ψ(~r )
+ V (~r ) + Vcm(~R ) = Etotal .

For the differential equation to hold for all ~R and ~r, we must have

− h−2

2M

∇2
cmψcm(~R )

ψ(~R )
+ Vcm(~R ) = Ecm and − h−2

2m

∇2ψ(~r )

ψ(~r )
+ V (~r ) = E ,
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where Ecm and E are constants of separation that sum to Etotal. We then
have two 1-body Schrödinger equation problems:

h−2

2M
∇2

cmψcm(~R ) + Vcm(~R )ψ(~R ) = Ecmψ(~R )

and

− h−2

2m
∇2ψ(~r ) + V (~r )ψ(~r ) = Eψ(~r ) .

The center-of-mass problem is just the free particle Schrödinger equation
if Vcm(~R ) = 0.

The relative problem is just the central force Schrödinger equation. The
wave functions that solve the relative problem give the position of particle 2
relative to particle 1. Of course, one can get the reverse by a change of sign
of the relative vector. The relative problem is not in an inertial frame, but it
can be treated as if it were because it is a lawful equation derived from the
Schrödinger equation. I always think that the reduced mass must account
for the non-inertiality, but no textbook I know of spits out that notion.

The classical 2-body problem with only a central force separates in
analogous way to the quantum 2-body problem. For example, the identical
formula of the reduced mass appears.

Redaction: Jeffery, 2001jan01

019 qfull 02000 2 5 0 moderate thinking: symmetrization of 4 orthonormal single-particle
states
12. Say |ai〉 and |bi〉 are ORTHONORMAL single-particle states, where i is a particle

label. The label can be thought of as labeling the coordinates to be integrated or
summed over in an inner product: see below. The symbolic combination of such
states for two particles, one in a and one in b is

|12〉 = |a1〉|b2〉 ,

where 1 and 2 are particle labels. This combination is actually a tensor product, but
let’s not worry about that now. The inner product of such a combined state is written

〈12|12〉 = 〈a1|a1〉〈b2|b2〉 .

If one expanded the inner product in the position and spinor representation assuming
the wave function and spinor parts can be separated (which in general is not the case),

〈12|12〉 =

[
∫

ψa(x1)
∗ψa(x1) dx1 ( c∗a+ c∗a− )1

(

ca+

ca−

)

1

]

×
[
∫

ψb(x2)
∗ψb(x2) dx2 ( c∗b+ c∗b− )2

(

cb+
cb−

)

2

]

.

A lot of conventions go into the last expression: don’t worry too much about them.
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a) Let particles 1 and 2 be NON-identical particles. What are the two simplest and
most obvious normalized 2-particle states that can be constructed from states a and
b? What happens if a = b (i.e., the two single-particle states are only one state
actually)?

b) Say particles 1 and 2 are identical bosons or identical fermions. What is the only
normalized physical 2-particle state that can be constructed in either case allowing
for the possibility that a = b (i.e., the two single-particle states are only one state
actually)? What happens if a = b for fermions?

SUGGESTED ANSWER:

a) Behold:

|12〉 = |a1〉|b2〉 and |21〉 = |a2〉|b1〉

which are just the allowed product states. More complicated states can be
constructed if the particles are in mixtures of the two states just given. If
a = b, then one can construct only one state

|12〉 = |a1〉|a2〉 .

b) Behold:

|12〉 =
1

√

2(1 + δab)
(|a1〉|b2〉 ± |a2〉|b1〉) ,

where the upper case is for bosons and the lower case is for fermions.
I don’t think there are any other possible physical states that can

be constructed. There are only two possible product states. And only a
symmetrized mixed state is allowed.

The Kronecker delta allows for the case that a = b for bosons. Obviously,
we never had to symmetrize at all for bosons if a = b. If a = b for fermions,
the state is null and thus no physical state can be constructed in this case.
The nullness is a manifestation of the Pauli exclusion principle (a corollary
of the symmetrization postulate): two fermions cannot be in found in single-
particle state (as specified by a C.S.C.O.: i.e., a complete set of commuting
observables (CT-143)). “Cannot be found” has to be interpreted as the
probability for two fermions in the same single-particle state is zero or that
the probability of collapsing the wave function to having two fermions in
the same single-particle stat is zero. So if a = b for fermions, then physical
symmetrized state cannot be created from product states.

Redaction: Jeffery, 2001jan01

019 qfull 02300 3 5 0 tough thinking: exchange force
Extra keywords: (Gr-182)

13. Say we have orthonormal single-particle states |a〉 and |b〉. If we have distinct
particles 1 and 2 in, respectively, |a〉 and |b〉, the net state is

|a1, b2〉 = |a1〉|b2〉 .
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Of course, each of particles 1 and 2 could be in linear combinations of the two states if
the states physically allowed the distinct particles to be in either one. In that case the
linear combined state would be a four term state. But we have no interest in pursuing
that digression at the moment.

Now two identical particles in states |a〉 and |b〉 have no choice, but to be in a
symmetrized state by the symmetry postulate:

|1, 2〉 =
1

√

2(1 + δab)
(|a1, b2〉 ± |a2, b1〉) ,

where the upper case is for identical bosons and the lower case for identical fermions.
If the two states are actually the same state |a〉, then the state for bosons reduces to

|1, 2〉 = |a1, a2〉

and for fermions the state reduces to the null state |0〉 which is not a physical state,
and thus the Pauli exclusion principle is incorporated in the state expression.

Note products of kets are actually tensor products (CT-154). In taking scalar
products, the bras with index i (e.g., 1 or 2 above) act on the kets of index i. For
example, for the state |1a, 2b〉 = |a1〉|a2〉 the norm squared is

〈a1, b2|a1, b2〉 = 〈a1|a1〉〈a2|a2〉 .

The fact that identical particles must be in symmetrized states means that their
wave functions will be more or less clumped depending on whether they are bosons or
fermions than if they could be fitted into simple product states like distinct particles.
We are not bothering with the complication of spin for this problem. We will assume
that all the particles are in the same spin state: e.g., they are all in the spin up state.

The clumping/declumping effect is called the EXCHANGE FORCE.
Obviously, it is not really a force, but rather a result of the symmetrization principle
requirements on physical states for identical particles. Still for some practical purposes
one can certainly consider it as force. In this problem, we investigate the effect of the
EXCHANGE FORCE.

a) Expand 〈∆x2〉 = 〈(x1 − x2)
2〉 into three terms that can be evaluated individually.

b) For the given two-particle state for DISTINCT PARTICLES |a1, b2〉 = |a1〉|b2〉,
formally show that

〈∆x2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ,
where the particle labels can be dropped from the single-particle state expectation
values, but these values must be identified by the single-particle state that they are
for: i.e., for states |a〉 and |b〉. What happens in the case that |a〉 = |b〉? HINT:
Remember that variance is defined by

σ2 = 〈x2〉 − 〈x〉2 .

c) There is an identity that is needed for part (d) and is useful in many other contexts.
Say |α〉 and |β〉 are general states (e.g., they could be one-particle or two-particle
states). Say that

|Ψ〉 = cα|α〉 + cβ|β〉
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and we have general observable Q. We have the identity

〈Ψ|Ψ〉 = |cα|2〈α|α〉 + |cβ |2〈β|β〉 + 2Re(c∗αcβ〈α|Q|β〉) .

Prove the identity.

d) For the given two-particle state for IDENTICAL PARTICLES

|1, 2〉 =
1

√

2(1 + δab)
(|a1, b2〉 ± |a2, b1〉) ,

determine 〈∆x2〉 for identical bosons and fermions. What happens in the case that
|a〉 = |b〉? HINT: Recall that

〈a|b〉 = δab ,

since the states are orthonormal.

SUGGESTED ANSWER:

a) Behold:
〈∆x2〉 = 〈(x1 − x2)

2〉 = 〈x2
1〉 + 〈x2

2〉 − 2〈x1x2〉 .

b) For distinct particles,

〈x2
1〉 = 〈a1, b2|x2

1|a1, b2〉 = 〈a1|x2
1|a1〉〈b2|b2〉 = 〈x2〉a ,

〈x2
2〉 = 〈a1, b2|x2

2|a1, b2〉 = 〈a1|a1〉〈b2|x2
2|b2〉 = 〈x2〉b ,

〈x1x2〉 = 〈a1, b2|x1x2|a1, b2〉 = 〈a1|x1|a1〉〈b2|x2|b2〉 = 〈x〉a〈x〉b ,

where the particle labels 1 and 2 are irrelevant to the single-particle state
expectation values, and so we have dropped them. Thus,

〈∆x2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ,

In the case that |a〉 = |b〉,

〈∆x2〉 = 2〈x2〉a − 2〈x〉2a = 2σ2
a .

So the relative variance is just twice the absolute variance of a single particle
in this case.

c) Begorra:

〈Ψ|Q|Ψ〉 = |cα|2〈α|Q|α〉 + |cβ |2〈β|Q|β〉 + c∗αcβ〈α|Q|β〉 + cαc
∗
β〈β|Q|α〉

= |cα|2〈α|α〉 + |cβ|2〈β|β〉 + 2Re(c∗αcβ〈α|Q|β〉) ,

where we have used the definition of the Hermitian conjugate and the
Hermiticity of Q: i.e., we have used

〈β|Q|α〉 = 〈α|Q†|β〉∗ = 〈α|Q|β〉∗ .
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Thus, we have proven the identity

〈Ψ|Ψ〉 = |cα|2〈α|α〉 + |cβ |2〈β|β〉 + 2Re(c∗αcβ〈α|Q|β〉) .

d) For identical particles and making use of the identity, we find

〈x2
1〉 =

1

2(1 + δab)
[〈a1|x2

1|a1〉〈b2|b2〉+ 〈a2|a2〉〈b1|x2
1|b1〉 ± 2Re(〈a1|x2

1|b1〉〈b2|a2〉)]

=
1

2(1 + δab)
(〈x2〉a + 〈x2〉b ± 2〈x2〉aδab)

〈x2
2〉 =

1

2(1 + δab)
[〈a1|a1〉〈b2|x2

2|b2〉 + 〈a2|x2
2|a2〉〈b1|b1〉 ± 2Re(〈a1|b1〉〈b2|x2

2|a2〉)]

=
1

2(1 + δab)
(〈x2〉a + 〈x2〉b ± 2〈x2〉aδab)

〈x1x2〉 =
1

2(1 + δab)
[〈a1|x1|a1〉〈b2|x2|b2〉 + 〈a2|x2|a2〉〈b1|x1|b1〉 ± 2Re(〈a1|x1|b1〉〈b2|x2|a2〉)]

=
1

2(1 + δab)
(2〈x〉a〈x〉b ± 2|〈x〉ab|2)

=
1

(1 + δab)
(〈x〉a〈x〉b ± |〈x〉ab|2) .

Thus,

〈∆x2〉 =
1

(1 + δab)
(〈x2〉a + 〈x2〉b ± 2〈x2〉aδab − 2〈x〉a〈x〉b ∓ 2|〈x〉ab|2) .

In the case of |a〉 6= |b〉, we get

〈∆x2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ∓ 2|〈x〉ab|2 .
Note for bosons the relative variance is smaller than for distinct particles
by the term −2|〈x〉ab|2 and for fermions it is larger by the term 2|〈x〉ab|2.
Thus symmetrization clumps identical bosons more and identical fermions
less that for the counterpart distinct particle case. This amounts to the
exchange force.

If the |a〉 and |b〉 states don’t spatially overlap, then 〈b|x|a〉 = 0 and the
identical-particle result is the same as distinct particle result.

In the case of |a〉 = |b〉, we get

〈∆x2〉 = 〈x2〉a ± 〈x2〉a − 〈x〉2a ∓ 〈x〉2a .
For bosons, we have

〈∆x2〉 = 2〈x2〉a − 2〈x〉2a = 2σ2
a

which is the same result as for distinct particles obtained in the part (b)
answer. For fermions, we have

〈∆x2〉 = 0

which is what you would expect for a null state.

Redaction: Jeffery, 2001jan01



Appendix 2 Quantum Mechanics Equation Sheet

Note: This equation sheet is intended for students writing tests or reviewing material.
Therefore it neither intended to be complete nor completely explicit. There are fewer
symbols than variables, and so some symbols must be used for different things.

1 Constants not to High Accuracy

Constant Name Symbol Derived from CODATA 1998

Bohr radius aBohr =
λCompton

2πα
= 0.529 Å

Boltzmann’s constant k = 0.8617 × 10−6 eV K−1

= 1.381 × 10−16 erg K−1

Compton wavelength λCompton =
h

mec
= 0.0246 Å

Electron rest energy mec
2 = 5.11 × 105 eV

Elementary charge squared e2 = 14.40 eV Å

Fine Structure constant α =
e2

h−c
= 1/137.036

Kinetic energy coefficient
h−2

2me
= 3.81 eV Å2

h−2

me
= 7.62 eV Å2

Planck’s constant h = 4.15 × 10−15 eV
Planck’s h-bar h− = 6.58 × 10−16 eV

hc = 12398.42 eV Å
h−c = 1973.27 eV Å

Rydberg Energy ERyd =
1

2
mec

2α2 = 13.606 eV

2 Some Useful Formulae

Leibniz’s formula
dn(fg)

dxn
=

n
∑

k=0

(

n

k

)

dkf

dxk

dn−kg

dxn−k

Normalized Gaussian P =
1

σ
√

2π
exp

[

−(x− 〈x〉)2
2σ2

]

3 Schrödinger’s Equation

HΨ(x, t) =

[

p2

2m
+ V (x)

]

Ψ(x, t) = ih−∂Ψ(x, t)

∂t
14
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Hψ(x) =

[

p2

2m
+ V (x)

]

ψ(x) = Eψ(x)

HΨ(~r , t) =

[

p2

2m
+ V (~r )

]

Ψ(~r , t) = ih−∂Ψ(~r , t)

∂t
H|Ψ〉 = ih− ∂

∂t
|Ψ〉

Hψ(~r ) =

[

p2

2m
+ V (~r )

]

ψ(~r ) = Eψ(~r ) H|ψ〉 = E|ψ〉

4 Some Operators

p =
h−
i

∂

∂x
p2 = −h−2 ∂2

∂x2

H =
p2

2m
+ V (x) = − h−2

2m

∂2

∂x2
+ V (x)

p =
h−
i
∇ p2 = −h−2∇2

H =
p2

2m
+ V (~r ) = − h−2

2m
∇2 + V (~r )

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
= r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ θ̂

1

r sin θ

∂

∂θ

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

5 Kronecker Delta and Levi-Civita Symbol

δij =

{

1, i = j;
0, otherwise

εijk =

{

1, ijk cyclic;
−1, ijk anticyclic;
0, if two indices the same.

εijkεiℓm = δjℓδkm − δjmδkℓ (Einstein summation on i)
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6 Time Evolution Formulae

General
d〈A〉
dt

=

〈

∂A

∂t

〉

+
1

h−
〈i[H(t), A]〉

Ehrenfest’s Theorem
d〈~r 〉
dt

=
1

m
〈~p 〉 and

d〈~p 〉
dt

= −〈∇V (~r )〉

|Ψ(t)〉 =
∑

j

cj(0)e−iEjt/h−|φj〉

7 Simple Harmonic Oscillator (SHO) Formulae

V (x) =
1

2
mω2x2

(

− h−2

2m

∂2

∂x2
+

1

2
mω2x2

)

ψ = Eψ

β =

√

mω

h−
ψn(x) =

β1/2

π1/4

1√
2nn!

Hn(βx)e−β2x2/2 En =

(

n+
1

2

)

h−ω

H0(βx) = H0(ξ) = 1 H1(βx) = H1(ξ) = 2ξ

H2(βx) = H2(ξ) = 4ξ2 − 2 H3(βx) = H3(ξ) = 8ξ3 − 12ξ

8 Position, Momentum, and Wavenumber Representations

p = h−k Ekinetic = ET =
h−2
k2

2m

|Ψ(p, t)|2 dp = |Ψ(k, t)|2 dk Ψ(p, t) =
Ψ(k, t)√

h−

xop = x pop =
h−
i

∂

∂x
Q

(

x,
h−
i

∂

∂x
, t

)

position representation

xop = − h−
i

∂

∂p
pop = p Q

(

− h−
i

∂

∂p
, p, t

)

momentum representation
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δ(x) =

∫ ∞

−∞

eipx/h−

2πh−
dp δ(x) =

∫ ∞

−∞

eikx

2π
dk

Ψ(x, t) =

∫ ∞

−∞

Ψ(p, t)
eipx/h−

(2πh−)1/2
dp Ψ(x, t) =

∫ ∞

−∞

Ψ(k, t)
eikx

(2π)1/2
dk

Ψ(p, t) =

∫ ∞

−∞

Ψ(x, t)
e−ipx/h−

(2πh−)1/2
dx Ψ(k, t) =

∫ ∞

−∞

Ψ(x, t)
e−ikx

(2π)1/2
dx

Ψ(~r , t) =

∫

all space

Ψ(~p , t)
ei~p·~r/h−

(2πh−)3/2
d3p Ψ(~r , t) =

∫

all space

Ψ(~k , t)
ei~k·~r

(2π)3/2
d3k

Ψ(~p , t) =

∫

all space

Ψ(~r , t)
e−i~p·~r/h−

(2πh−)3/2
d3r Ψ(~k , t) =

∫

all space

Ψ(~r , t)
e−i~k·~r

(2π)3/2
d3r

9 Commutator Formulae

[A,BC] = [A,B]C +B[A,C]





∑

i

aiAi,
∑

j

bjBj



 =
∑

i,j

aibj [Ai, bj]

if [B, [A,B]] = 0 then [A, F (B)] = [A,B]F ′(B)

[x, p] = ih− [x, f(p)] = ih−f ′(p) [p, g(x)] = −ih−g′(x)

[a, a†] = 1 [N, a] = −a [N, a†] = a†

10 Uncertainty Relations and Inequalities

σxσp = ∆x∆p ≥ h−
2

σQσQ = ∆Q∆R ≥ 1

2
|〈i[Q,R]〉|

σH∆tscale time = ∆E∆tscale time ≥
h−
2
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11 Probability Amplitudes and Probabilities

Ψ(x, t) = 〈x|Ψ(t)〉 P (dx) = |Ψ(x, t)|2 dx ci(t) = 〈φi|Ψ(t)〉 P (i) = |ci(t)|2

12 Spherical Harmonics

Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .
s p d f g h i . . .

13 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
α =

e2

h−c

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials
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〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
= −13.606

Z2

n2

mreduced

me
eV

14 General Angular Momentum Formulae

[Ji, Jj ] = ih−εijkJk (Einstein summation on k) [J2, ~J ] = 0

J2|jm〉 = j(j + 1)h−2|jm〉 Jz|jm〉 = mh−|jm〉

J± = Jx ± iJy J±|jm〉 = h−
√

j(j + 1) −m(m± 1)|jm± 1〉

J{ x

y} =

{

1
2
1
2i

}

(J+ ± J−) J†
±J± = J∓J± = J2 − Jz(Jz ± h−)

[Jfi, Jgj] = δfgih−εijkJk
~J = ~J1 + ~J2 J2 = J2

1 + J2
2 + J1+J2− + J1−J2+ + 2J1zJ2z

J± = J1± + J2± |j1j2jm〉 =
∑

m1m2,m=m1+m2

|j1j2m1m2〉〈j1j2m1m2|j1j2jm〉j1j2jm〉

|j1 − j2| ≤ j ≤ j1 + j2

j1+j2
∑

|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1)

15 Spin 1/2 Formulae

Sx =
h−
2

(

0 1
1 0

)

Sy =
h−
2

(

0 −i
i 0

)

Sz =
h−
2

(

1 0
0 −1

)
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|±〉x =
1√
2

(|+〉 ± |−〉) |±〉y =
1√
2

(|+〉 ± i|−〉) |±〉z = |±〉

| + +〉 = |1,+〉|2,+〉 | + −〉 =
1√
2

(|1,+〉|2,−〉± |1,−〉|2,+〉) | − −〉 = |1,−〉|2,−〉

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

σiσj = δij + iεijkσk [σi, σj] = 2iεijkσk {σi, σj} = 2δij

( ~A · ~σ)( ~B · ~σ) = ~A · ~B + i( ~A× ~B) · ~σ

d(~S · n̂)

dα
= − i

h−
[~S · α̂, ~S · n̂] ~S · n̂ = e−i~S·~α~S · n̂0e

i~S·~α |n̂±〉 = e−i~S·~α|ẑ±〉

eixA = 1 cos(x) + iA sin(x) if A2 = 1 e−i~σ·~α/2 = 1 cos(x) − i~σ · α̂ sin(x)

σif(σj) = f(σj)σiδij + f(−σj)σi(1 − δij)

µBohr =
eh−
2m

= 0.927400915(23)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

g = 2
(

1 +
α

2π
+ . . .

)

= 2.0023193043622(15)

~µorbital = −µBohr

~L

h−
~µspin = −gµBohr

~S

h−
~µtotal = ~µorbital + ~µspin = −µBohr

(~L+ g~S)

h−

Hµ = −~µ · ~B Hµ = µBohrBz
(Lz + gSz)

h−
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16 Time-Independent Approximation Methods

H = H(0) + λH(1) |ψ〉 = N(λ)

∞
∑

k=0

λk|ψ(k)
n 〉

H(1)|ψ(m−1)
n 〉(1−δm,0)+H(0)|ψ(m)

n 〉 =

m
∑

ℓ=0

E(m−ℓ)|ψ(ℓ)
n 〉 |ψ(ℓ>0)

n 〉 =

∞
∑

m=0, m 6=n

anm|ψ(0)
n 〉

|ψ1st
n 〉 = |ψ(0)

n 〉 + λ
∑

all k, k 6=n

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉

E
(0)
n − E

(0)
k

|ψ(0)
k 〉

E1st
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

E2nd
n = E(0)

n + λ
〈

ψ(0)
n |H(1)|ψ(0)

n

〉

+ λ2
∑

all k, k 6=n

∣

∣

∣

〈

ψ
(0)
k |H(1)|ψ(0)

n

〉
∣

∣

∣

2

E
(0)
n − E

(0)
k

E(φ) =
〈φ|H|φ〉
〈φ|φ〉 δE(φ) = 0

Hkj = 〈φk|H|φj〉 H~c = E~c

17 Time-Dependent Perturbation Theory

π =

∫ ∞

−∞

sin2(x)

x2
dx

Γ0→n =
2π

h−
|〈n|Hperturbation|0〉|2δ(En −E0)

18 Interaction of Radiation and Matter

~Eop = −1

c

∂ ~Aop

∂t
~Bop = ∇× ~Aop

19 Box Quantization
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kL = 2πn, n = 0,±1,±2, . . . k =
2πn

L
∆kcell =

2π

L
∆k3

cell =
(2π)3

V

dNstates = g
k2 dk dΩ

(2π)3/V

20 Identical Particles

|a, b〉 =
1√
2

(|1, a; 2, b〉 ± |1, b; 2, a〉)

ψ(~r1, ~r 2) =
1√
2

(ψa(~r 1)ψb(~r 2) ± ψb(~r 1)ψa(~r 2))

21 Second Quantization

[ai, a
†
j] = δij [ai, aj] = 0 [a†i , a

†
j] = 0 |N1, . . . , Nn〉 =

(a†n)Nn

√
Nn!

. . .
(a†1)

N1

√
N1!

|0〉

{ai, a
†
j} = δij {ai, aj} = 0 {a†i , a

†
j} = 0 |N1, . . . , Nn〉 = (a†n)Nn . . . (a†1)

N1 |0〉

Ψs(~r )† =
∑

~p

e−i~p·~r

√
V

a†~ps Ψs(~r ) =
∑

~p

ei~p·~r

√
V
a~ps

[Ψs(~r ),Ψs′(~r ′)]∓ = 0 [Ψs(~r )†,Ψs′(~r ′)†]∓ = 0 [Ψs(~r ),Ψs′(~r ′)†]∓ = δ(~r − ~r ′)δss′

|~r1s1, . . . , ~rnsn〉 =
1√
n!

Ψsn
(~r n)† . . .Ψsn

(~r n)†|0〉

Ψs(~r )†|~r1s1, . . . , ~rnsn〉
√
n+ 1|~r1s1, . . . , ~rnsn, ~rs〉

|Φ〉 =

∫

d~r1 . . . d~rn Φ(~r1, . . . , ~rn)|~r1s1, . . . , ~rnsn〉
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1n =
∑

s1...sn

∫

d~r1 . . . d~rn |~r1s1, . . . , ~rnsn〉〈~r1s1, . . . , ~rnsn| 1 = |0〉〈0|+
∞
∑

n=1

1n

N =
∑

~ps

a†~psa~ps T =
∑

~ps

p2

2m
a†~psa~ps

ρs(~r ) = Ψs(~r )†Ψs(~r ) N =
∑

s

∫

d~r ρs(~r ) T =
1

2m

∑

s

∫

d~r∇Ψs(~r )† · ∇Ψs(~r )

~js(~r ) =
1

2im

[

Ψs(~r )†∇Ψs(~r ) − Ψs(~r )∇Ψs(~r )†
]

Gs(~r − ~r ′) =
3n

2

sin(x) − x cos(x)

x3
gss′(~r − ~r ′) = 1 − δss′

Gs(~r − ~r ′)2

(n/2)2

v2nd =
1

2

∑

ss′

∫

d~rd~r ′ v(~r − ~r ′)Ψs(~r )†Ψs′(~r ′)†Ψs′(~r ′)Ψs(~r )

v2nd =
1

2V

∑

pp′qq′

∑

ss′

v~p−~p ′δ~p+~q,~p′+~q′a†~psa
†
~qs′a~q ′s′a~p ′s v~p−~p ′ =

∫

d~r e−i(~p−~p ′)·~rv(~r )

22 Klein-Gordon Equation

E =
√

p2c2 +m2c4
1

c2

(

ih− ∂

∂t

)2

Ψ(~r, t) =

[

(

h−
i
∇
)2

+m2c2

]

Ψ(~r, t)

[

1

c2
∂2

∂t2
−∇2 +

(

mc

h−

)2
]

Ψ(~r, t) = 0

ρ =
ih−

2mc2

(

Ψ∗ ∂Ψ

∂t
− Ψ

∂Ψ∗

∂t

)

~j =
h−

2im
(Ψ∗∇Ψ − Ψ∇Ψ∗)

1

c2

(

ih− ∂

∂t
− eΦ

)2

Ψ(~r, t) =

[

(

h−
i
∇− e

c
~A

)2

+m2c2

]

Ψ(~r, t)

Ψ+(~p, E) = ei(~p·~r−Et)/h− Ψ−(~p, E) = e−i(~p·~r−Et)/h−


