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Modern Physics: Physics 305, Section 1

NAME:

Homework 8: Spin, Magnetic Dipole Moments, and the Spin-Orbit Effect: Homeworks are due
as posted on the course web site. They are NOT handed in. The student reports that it is completed and
receives one point for this. Solutions are already posted, but students are only permitted to look at the
solutions after completion. The solutions are intended to be (but not necessarily are) super-perfect and go
beyond a complete answer expected on a test.

014 qmult 00100 1 4 5 easy deducto-memory: spin defined
Extra keywords: mathematical physics

1. “Let’s play Jeopardy! For $100, the answer is: It is the intrinsic angular momentum of a fundamental
(or fundamental-for-most-purposes) particle. It is invariant and its quantum number s is always an
integer or half-integer.

What is , Alex?

a) rotation b) quantum number c) magnetic moment d) orbital angular momentum
e) spin

SUGGESTED ANSWER: (e)

Wrong answers:

a) Well no, but not a bad guess.

Redaction: Jeffery, 2008jan01

014 qmult 00110 1 4 1 easy deducto-memory: Goudsmit and Uhlenbeck, spin
2. “Let’s play Jeopardy! For $100, the answer is: Goudsmit and Ulhenbeck.”

a) Who are the original proposers of electron spin in 1925, Alex?
b) Who performed the Stern-Gerlach experiment, Alex?
c) Who are Wolfgang Pauli’s evil triplet brothers, Alex?
d) What are two delightful Dutch cheeses, Alex?
e) What were Rosencrantz and Gildenstern’s first names, Alex?

SUGGESTED ANSWER: (a) See Le-185 and ER-276. Actually Compton hinted at the idea in
1921, but didn’t follow up on it.

Wrong Answers:

b) Now wouldn’t you think Stern & Gerlach performed the Stern-Gerlach experiment? CDL-
897 calls it the Stern-Gerlach experiment.

e) Rosencrantz and Gildenstern were real people: members of the Danish embassy to England
in 1592. Frederick (Fred) Rosenkrantz later met up with Johannes Kepler and thus
provides the missing link between Kepler and Shakespeare. Rosenkrantz died tragically
in a duel—trying to stop it, not fight it—but Shakespeare and Stoppard have made him
immortal.

Redaction: Jeffery, 2001jan01

014 qmult 00120 1 1 1 easy memory: spin magnitude
3. A spin s particle’s angular momentum vector magnitude (in the vector model picture) is

a)
√

s(s+ 1)h−. b) sh− c)
√

s(s− 1)h− d) −sh− e) s(s+ 1)h−2

SUGGESTED ANSWER: (a)

Wrong answers:

e) This is the magnitude squared or the eigenvalue of the S2
op spin operator.

Redaction: Jeffery, 2008jan01

014 qmult 00130 1 1 5 easy memory: eigenvalues of spin 1/2 particle
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4. The eigenvalues of a component of the spin of a spin 1/2 particle are always:

a) ±h−. b) ± h−
3

. c) ± h−
4

. d) ± h−
5

. e) ± h−
2

.

SUGGESTED ANSWER: (e)

Wrong Answers:

Redaction: Jeffery, 2001jan01

014 qmult 00130 1 1 2 easy memory: eigenvalues of spin s particle
5. The quantum numbers for the component of the spin of a spin s particle are always:

a) ±1. b) s, s− 1, s− 2, . . . ,−s+ 1,−s. c) ±1

2
. d) ±2. e) ±1

4
.

SUGGESTED ANSWER: (b)

Wrong Answers:

c) This is only correct for electrons.

Redaction: Jeffery, 2001jan01

014 qmult 00140 1 4 2 easy deducto-memory: spin and environment
6. Is the spin (not spin component) of an electron dependent on the electron’s environment?

a) Always.
b) No. Spin is an intrinsic, unchanging property of a particle.
c) In atomic systems, no, but when free, yes.
d) Both yes and no.
e) It depends on a recount in Palm Beach.

SUGGESTED ANSWER: (b)

Wrong Answers:

e) Only for those who recall the American presidential election of 2000.

Redaction: Jeffery, 2001jan01

014 qmult 00900 1 1 3 easy memory: space and spin operators commute
7. A spatial operator and a spin operator commute:

never. b) sometimes. c) always. d) always and never. e) to the office.

SUGGESTED ANSWER: (c)

Wrong Answers:

e) I don’t think this could reasonably be interpreted as a right answer.

Redaction: Jeffery, 2001jan01

014 qmult 01200 1 1 2 easy memory: Bohr magneton
8. What is

µb =
eh−
2me

= 9.27400915(26)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T ?

a) The nuclear magneton, the characteristic magnetic moment of nuclear systems.
b) The Bohr magneton, the characteristic magnetic moment of electronic systems.
c) The intrinsic magnetic dipole moment of an electron.
d) The coefficient of sliding friction.
e) The zero-point energy of an electron.

SUGGESTED ANSWER: (b)

Wrong Answers:
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a) The subscript “b” and the values should tell you this must be wrong.

c) No. For magnitude of the intrinsic magnetic dipole moment is g
√

3/2 times the Bohr
magneton (ER-274).

Redaction: Jeffery, 2001jan01

014 qmult 01210 1 1 3 easy memory: g factor

9. The g factor in quantum mechanics is the dimensionless factor for some system that multiplied by
the appropriate magneton (e.g., Bohr magneton for electron systems) times the angular momentum of
the system divided by h− gives the magnetic moment of the system. For example for the electron, the
intrinsic magnetic moment operator associated with intrinsic spin is given by

~µop = −gµb

~Sop

h−
,

where µb is the Bohr magneton and Sop is the spin vector operator. What is g for the intrinsic magnetic
moment operator of an electron to modern accuracy?

a) 1. b) 2. c) 2.0023193043622(15). d) 1/137. e) 137.

SUGGESTED ANSWER: (c)

Wrong answers:

b) This is what Dirac’s relativistic quantum theory gives. Modern quantum electrodynamics gives
to g to about 1 in 1012 (Wikipedia: 2008apr30: Precision tests of QED).

Redaction: Jeffery, 2008jan01

014 qmult 01210 1 1 4 easy memory: magnetic moment precession

Extra keywords: The precession is also called Larmor precession (En-114)

10. An object in a uniform magnetic field with magnetic moment due to the object’s angular momentum
will both classically and quantum mechanically:

a) Lancy progress. b) Lorenzo regress. c) London recess. d) Larmor precess.
e) Lamermoor transgress.

SUGGESTED ANSWER: (d)

Wrong Answers:

e) That too.

Redaction: Jeffery, 2001jan01

018 qmult 00100 1 1 4 easy memory: spin-orbit interaction, hydrogenic atom

Extra keywords: spin-orbit interaction, hydrogenic atom

11. What is the main internal perturbation preventing the spinless hydrogenic eigenstates from being the
actual ones?

a) The Stark effect. b) The Zeeman effect. c) The Stern-Gerlach effect.
d) The spin-orbit interaction. e) The Goldhaber interaction.

SUGGESTED ANSWER: (d)

Wrong Answers:

b) The spin-orbit interaction isn’t usually considered as a Zeeman effect although the physics
is related: they are both magnetic interactions. The Zeeman effect is usually reserved
for the effect of external magnetic fields and the expression for the interaction lacks the
characteristic ~L · ~S factor of the spin-orbit interaction.

e) The Goldhabers are great old particle guys: Gerson and Maurice.

Redaction: Jeffery, 2001jan01

018 qfull 00500 1 3 0 easy math: fine-structure energy levels
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12. The hydrogen atom energy level energies corrected for the fine structure perturbations (i.e., the
relativistic and spin-orbit perturbations) is

E(n, ℓ,±1/2, j) = −ERyd

n2

m

me

[

1 +
α2

n2

(

n

j + 1/2
− 3

4

)]

,

where n is the principal quantum number, ℓ is the orbital angular momentum quantum number, ±1/2
is allowed variations of j from ℓ, j (the total angular momentum quantum number) is a redundant
parameter since j = max(ℓ± 1/2, 1/2) (but it is a convenient one),

ERyd =
1

2
mec

2α2

is the Rydberg energy, me is the electron mass, α ≈ 1/137 is the fine structure constant, and

m =
memp

me +mp

is the reduced mass with mp being the proton mass. The bracketed perturbation correction term is

α2

n2

(

n

j + 1/2
− 3

4

)

which is of order α2 ≈ 10−4 times smaller than the unperturbed energy. Show that the perturbation
term is always negative and reduces the energy from the unperturbed energy: i.e., show that

n

j + 1/2
− 3

4
> 0

in all cases.

SUGGESTED ANSWER:

The correction term for a given n is smallest for largest the maximum possible j which is

jmax = n− 1 +
1

2
= n− 1

2
,

where we have used the fact that the largest ℓ for a given n is n − 1 and that j is largest for the
+1/2 case. Let us assume the inequality

n

j + 1/2
− 3

4
> 0

and use jmax in it and show that that leads to a correct result. Behold:

n

jmax + 1/2
− 3

4
> 0 ,

n

n
− 3

4
> 0 ,

1 − 3

4
> 0 ,

1

4
> 0 ,

which is obviously correct. Reversing the steps verifies that the inequality is valid for jmax, and
therefore it is valid for all j.

We have proven the inequality, and thus that the fine-structure perturbation always causes a
reduction from the energy of a given energy level.

Fortran-95 Code

Redaction: Jeffery, 2008jan01
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Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they are
neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so
some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998× 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

e = 1.602176487(40)× 10−19 C

ERydberg = 13.60569193(34) eV

ge = 2.0023193043622 (electron g-factor)

h = 6.62606896(33)× 10−34 J s = 4.13566733(10)× 10−15 eV s

hc = 12398.419 eVÅ ≈ 104 eV Å

h− = 1.054571628(53)× 10−34 J s = 6.58211899(16)× 10−16 eV s

k = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23),MeV

α = e2/(4πǫ0h−c) = 7.2973525376(50)× 10−3 = 1/137.035999679(94) ≈ 1/137

λC = h/(mec) = 2.4263102175(33)× 10−12 m = 0.0024263102175(33) Å

µB = 5.7883817555(79)× 10−5 eV/T

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

3 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]

sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

4 Blackbody Radiation
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Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

E = hν =
hc

λ
p =

h

λ

F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)

5 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

6 Matter Waves
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λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫ ∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

7 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t

ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗iφj dx = δij cj =

∫ b

a

φ∗jf(x) dx

[A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫ ∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ

|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫ ∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫ ∞

−∞

dx 〈Ψi|x〉〈x|Ψj〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x)

P
dfe/o(x)

dx
= ∓dfe/o(x)

dx

8 Spherical Harmonics
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Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .

s p d f g h i . . .

9 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a0

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
mreduced =

m1m2

m1 +m2

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
≈ −13.606× Z2

n2

mreduced

me
eV

10 Spin, Magnetic Dipole Moment, Spin-Orbit Interaction

S2
op =

3

4
h−

(

1 0
01

)

s =
1

2
s(s+ 1) =

3

4
S =

√

s(s+ 1)h− =

√
3

2
h−
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Sz,op =
h−
2

(

1 0
0 −1

)

ms = ±1

2
χ+ =

(

1
0

)

χ− =

(

0
1

)

µb =
eh−
2me

= 9.27400915(26)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

µnuclear =
eh−
2mp

= 5.05078324(13)× 10−27 J/T = 3.1524512326(45)× 10−8 eV/T

~µℓ = −gℓµb

~L

h−
µℓ = gℓµbℓ(ℓ+ 1) µℓ,z = −gℓµb

Lz

h−
µℓ,z = −gℓµbmℓ

~τ = ~µ× ~B PE = −~µ · ~B ~F = ∆(~µ · ~B) Fz =
∑

j

µj
∂Bj

∂z
~ω =

gℓµb

h−
~B

~J = ~L+ ~S J =
√

j(j + 1)h− j = |ℓ − s|, |ℓ− s+ 1|, . . . , ℓ+ s triangle rule

Jz = mj h− mj = −j,−j + 1, . . . , j − 1, j

E(n, ℓ,±1/2, j) = −ERyd

n2

m

me

[

1 +
α2

n2

(

n

j + 1/2
− 3

4

)]

11 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′

obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2
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E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)

τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


