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Modern Physics: Physics 305, Section 1

NAME:

Homework 7: The Hydrogenic Atom: Homeworks are due as posted on the course web site. They are
NOT handed in. The student reports that it is completed and receives one point for this. Solutions are
already posted, but students are only permitted to look at the solutions after completion. The solutions are
intended to be (but not necessarily are) super-perfect and go beyond a complete answer expected on a test.

011 qmult 00100 1 4 3 easy deducto-memory: central-force
1. In a central-force problem, the magnitude of central force depends only on:

a) the angle of the particle.
b) the vector ~r from the center to the particle.
c) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e) the uncertainty principle.

SUGGESTED ANSWER: (c)

Wrong Answers:

a) Nah.
b) Exactly wrong.

Redaction: Jeffery, 2001jan01

011 qmult 00200 1 1 2 easy memory: separation of variables
2. The usual approach to getting the eigenfunctions of the Hamiltonian in multi-dimensions is:

a) non-separation of variables. b) separation of variables. c) separation of invariables.
d) non-separation of invariables. e) non-separation of variables/invariables.

SUGGESTED ANSWER: (b) Yes separation of variables is the conventional name. See Ar-86.

Wrong Answers:

e) A nonsense answer

Redaction: Jeffery, 2001jan01

011 qmult 00210 1 1 3 easy memory: separation of variables
3. Say you have a differential equation of two independent variables x and y and you want to look for

solutions that can be factorized thusly f(x, y) = g(x)h(y). Say then it is possible to reorder equation
into the form

LHS(x) = RHS(y) ,

where LHS stands for left-hand side and RHS for right-hand side. Well LHS is explicitly independent
of y and implicitly independent of x:

∂LHS

∂y
= 0 and

∂LHS

∂x
=
∂RHS

∂x
= 0 .

Thus, LHS is equal to a constant C and necessarily RHS is equal to the same constant C which is called
the constant of separation (e.g., Arf-383). The solutions for g(x) and h(y) can be found separately
and are related to each other through C. The solutions for f(x, y) that cannot be factorized are not
obtained, of course, by the described procedured. However, if one obtains complete sets of g(x) and h(y)
solutions for the x-y region of interest, then any solution f(x, y) can be constructed at least to within
some approximation (WA-510). Thus, the generalization of the described procedure is very general and
powerful. It is called: then

a) separation of the left- and right-hand sides. b) partitioning.
c) separation of the variables. d) solution factorization. e) the King Lear method.

SUGGESTED ANSWER: (c)
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Wrong answers:

d) Seems reasonable.
e) Metaphorical names due turn up in physics like the Monte Carlo method (named after a

famous casino in Monaco) and the Urca process (named after a casino in Rio de Janeiro. One
sometimes gets the feeling that theoretical physicists spend a lot of time in casinos.

Redaction: Jeffery, 2008jan01

011 qmult 00300 1 4 2 easy deducto-memory: relative/cm reduction
4. “Let’s play Jeopardy! For $100, the answer is: By writing the two-body Schrödinger equation in

relative/center-of-mass coordinates.”

How do you , Alex?

a) reduce a ONE-BODY problem to a TWO-BODY problem
b) reduce a TWO-BODY problem to a ONE-BODY problem
c) solve a one-dimensional infinite square well problem
d) solve for the simple harmonic oscillator eigenvalues
e) reduce a TWO-BODY problem to a TWO-BODY problem

SUGGESTED ANSWER: (b)

Wrong answers:

e) Seems a bit pointless.

Redaction: Jeffery, 2001jan01

011 qmult 00310 1 4 4 easy deducto-memory: reduced mass
5. The formula for the reduced mass m for two-body system (with bodies labeled 1 and 2) is:

a) m = m1m2. b) m =
1

m1m2
. c) m =

m1 +m2

m1m2
. d) m =

m1m2

m1 +m2
. e) m =

1

m1
.

SUGGESTED ANSWER: (d)

Wrong Answers:

a) Dimensionally wrong.
b) Dimensionally wrong.
c) Dimensionally wrong.
e) Dimensionally wrong and it only refers to one mass.

Redaction: Jeffery, 2001jan01

011 qmult 00400 1 4 2 easy deducto memory: spherical harmonics 1
6. The eigensolutions of the angular part of the Hamiltonian for the central force problem are the:

a) linear harmonics. b) spherical harmonics. c) square harmonics.
d) Pythagorean harmonics. e) Galilean harmonics.

SUGGESTED ANSWER: (b)

Wrong Answers:

d) Legend has it that Pythagoras discovered the harmonic properties of strings.
e) Vincenzo Galileo, father of the other Galileo, was a scientist too and studied music

scientifically.

Redaction: Jeffery, 2001jan01

011 qmult 00420 1 4 3 easy deducto memory: spherical harmonic Y00

7. Just about the only spherical harmonic that people remember—and they really should remember it
too—is Y00 =:

a) eimφ. b) r2. c)
1√
4π

. d) θ2. e) 2a−3/2e−r/a.
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SUGGESTED ANSWER: (c)

Wrong Answers:

a) This is the general azimuthal component of the spherical harmonics: m = 0,±1,±2, . . .
b) This is radial and it’s not normalizable.
d) Except for Y00 itself, the spherical harmonics are all combinations of sinusoidal functions

of the θ and φ.
e) This is the R10 hydrogenic radial wave function where a is the scale radius

a = a0
me

m

1

Z
,

where me is the electron mass, m is the reduced mass, Z is the number of unit charges of
the central particle, and a0 is the Bohr radius (Gr-137). The Bohr radius is given by

a0 =
h−2

mee2
=
λC

2π α
≈ 0.529 Å ,

where e is the elementary charge in CGS-Gaussian units, λC = h−/(mec) is the Compton
wavelength, and alpha ≈ /137 is the fine structure constant.

Redaction: Jeffery, 2001jan01

011 qmult 00500 1 4 2 easy deducto-memory: spdf designations
8. Conventionally, the spherical harmonic eigenstates for angular momentum quantum numbers

ℓ = 0, 1, 2, 3, 4, ...

are designated by:

a) a, b, c, d, e, etc.
b) s, p, d, f , and then alphabetically following f : i.e., g, h, etc.
c) x, y, z, xx, yy, zz, xxx, etc.
d) A, C, B, D, E, etc.
e) $@%&*!!

SUGGESTED ANSWER: (b)

Wrong Answers:

a) This is the way it should be, not the way it is.
e) Only in Tasmanian devilish.

Redaction: Jeffery, 2001jan01

011 qfull 00100 2 5 0 moderate thinking: 2-body reduced to 1-body problem
Extra keywords: (Gr-178:5.1)

9. The 2-body time-independent Schrödinger equation is

− h−2

2m1
∇2

1ψ − h−2

2m2
∇2

2ψ + V ψ = Etotalψ .

If the V depends only on ~r = ~r2 − r1 (the relative vector), then the problem can be separate into
two problems: a relative problem 1-body equivalent problem and a center-of-mass 1-body equivalent
problem. The center of mass vector is

~R =
m1~r1 +m2~r2

M
,

where M = m1 +m2.

a) Determine the expressions for ~r1 and ~r2 in terms of ~R and ~r.



4

b) Determine the expressions for ∇2
1 and ∇2

2 in terms of ∇2
cm (the center-of-mass Laplacian operator)

and ∇2 (the relative Laplacian operator). Then re-express kinetic operator

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2

in terms of ∇2
cm and ∇2. HINTS: The x, y, and z direction components of vectors can all be

treated separately and identically since x components of ~R and ~r) (i.e., X and x) depend only on
x1 and x2, etc. You can introduce a reduced mass to make the transformed kinetic energy operator
simpler.

c) Now separate the 2-body Schrödinger equation assuming V = V (~r ). What are the solutions of the
center-of-mass problem? How would you interpret the solutions of the relative problem? HINT:

I’m only looking for a short answer to the interpretation question.

SUGGESTED ANSWER:

a) Well substituting for ~r2 using the relative expression gives

~R =
m1~r1 +m2~r2

M
= ~r1 +

m2

M
~r ,

and so

~r1 = ~R− m2

M
~r

and

~r2 = ~R+
m1

M
~r .

b) Well
∂

∂x( 1

2 )
=

∂X

∂x( 1

2 )

∂

∂X
+

∂x

∂x( 1

2 )

∂

∂x
=
m( 1

2 )

M

∂

∂X
∓ ∂

∂x
.

Thus
∂2

∂x2

( 1

2 )

=

[m( 1

2 )

M

]2
∂2

∂X2
+

∂2

∂x2
∓ 2

m( 1

2 )

M

∂

∂X

∂

∂x
.

The other coordinate directions are treated identically mutatis mutandis. We then find that

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2 = − h−2

M
∇2

cm − h−2

2

(

1

m1
+

1

m2

)

∇2 = − h−2

2M
∇2

cm − h−2

2m
∇2 ,

where define the reduced mass by

1

m
=

1

m1
+

1

m2
or m =

m1m2

m1 +m2
.

The symbol µ is often used for reduced mass, but I think that is unnecessarily obscure myself.
Note

1

m
≥ 1

mi
,

where i stands for 1 or 2 and equality only olds if the dropped mass is infinite. Thus

m ≤ mi or m ≤ min(m1,m2) .

If m1 = m2, then

m =
m1

2
.

If m1/m2 < 1, then one can expand the reduced mass expression in the power series (e.g.,
Ar-238)

m =
m1

1 +m1/m2
= m1

∑

k

(−1)k

(

m1

m2

)k

≈ m1

(

1 − m1

m2

)

,
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where the last expression holds for m1/m2 << 1.

c) We make the anzatz that we can set

ψtotal(~r1, ~r 2) = ψcm(~R )ψ(~r) .

The Schrödinger equation can then be written at once as

− h−2

2M

∇2
cmψcm(~R )

ψ(~R )
− h−2

2m

∇2ψ(~r )

ψ(~r )
+ V (~r ) = Etotal .

For the differential equation to hold for all ~R and ~r, we must have

− h−2

2M

∇2
cmψcm(~R )

ψ(~R )
= Ecm and − h−2

2m

∇2ψ(~r )

ψ(~r )
+ V (~r ) = E ,

where Ecm and E are constants of separation that sum to Etotal. We then have two 1-body
Schrödinger equation problems:

h−2

2M
∇2

cmψcm(~R ) = Ecmψ(~R ) and − h−2

2m
∇2ψ(~r ) + V (~r ) = Eψ(~r ) .

The center-of-mass problem is just the free particle Schrödinger equation. The relative problem
is just the central force Schrödinger equation. The wave functions that solve the relative
problem give the position of particle 2 relative to particle 1. Of course, one can get the reverse
by a change of sign of the relative vector. The relative problem is not an inertial frame, but
it can be treated as if it were. I always think that the reduced mass must account for the
non-inertiality, but no text book I know of spits out that notion.

The classical 2-body problem with only a central force separates in analogous way to the
quantum 2-body problem. For example, the identical formula of the reduced mass appears.

Redaction: Jeffery, 2001jan01

011 qfull 00200 2 3 0 moderate math: central-force azimuthal component solution
Extra keywords: solving the azimuthal component of the central force problem

10. In the central force problem the separated azimuthal part of the Schrödinger equation is:

d2Φ

dφ2
= −m2

ℓΦ ,

where −m2
ℓ is the constant of separation for the azimuthal part. The constant has been parameterized in

terms ofmℓ (which is not mass) since it turns out that for normalizable (and therefore physically allowed)
solutions that m must be an integer. The mℓ quantity is the z-component angular momentum quantum
number or magnetic quantum number (MEL-59; ER-240). The latter name arises since the z-components
of the angular momentum manifest themselves most noticeably in magnetic field phenomena.

a) Since the differential equation is second order, there should should be two independent solutions
for each value of m2

ℓ . Solve for the general solution Φ for each m2
ℓ : i.e., the solution that is a linear

combination of the two independent solutions with undetermined coefficients. Note that writing
the separation constant as m2

ℓ is so far just a parameterization and nothing yet demands that m2
ℓ

be greater than zero or pure real. HINT: Use an exponential trial function with exponent ±(a+ib)
with a and b real. Also remember the special case of m2

ℓ = 0.

b) Impose the single-valuedness and continuity condition for quantum mechanical solutions on

Φ = Ae(a+ib)φ +Be−(a+ib)φ ,

and show that a = 0 and mℓ must be an integer. What happens to the special case where mℓ = 0?
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c) What are the eigenfunction solutions for the z-component of the angular momentum operator

Lz =
h−
i

∂

∂φ
.

What are the eigenvalues that satisfy single-valuedness and continuity? What is the relationship
between these eigenfunction solutions and the azimuthal angle part of the hydrogenic atom wave
functions?

d) Normalize the allowed eigensolutions of Lz Note these solutions are in fact conventionally left
unnormalized: i.e., the coefficient of the special function that is the solution is left as just 1.
Normalization is conventionally imposed on the total orbital angular momentum solutions, spherical
harmonics.

SUGGESTED ANSWER:

a) The trial solution
Φ = e±(a+ib)φ

obviously satisfies the differential equation for

(a+ ib)2 = −m2
ℓ or (a+ ib) = i

√

m2
ℓ .

The general solution for each mℓ is then

Φ = Ae(a+ib)φ +Be−(a+ib)φ ,

where A and B are undetermined constants.
In the special case of m2

ℓ = 0, we have

Φ = Aφ+B ,

where A and B are undetermined constants.

b) To be single-valued and continuous, we demand that Φ(φ + 2π) = Φ(φ) for all φ. Thus we
must have

Ae(a+ib)(φ+2π) +Be−(a+ib)(φ+2π) = Ae(a+ib)φ +Be−(a+ib)φ

which we can rearrange to get

Ae(a+ib)(φ+π)
[

e(a+ib)π − e−(a+ib)π
)

= Be−(a+ib)(φ+π)
(

e(a+ib)π − e−(a+ib)π
)

.

If
e(a+ib)π − e−(a+ib)π 6= 0 ,

then
Ae2(a+ib)(φ+π) = B

which can only be true for general φ if a + ib = 0 which implies e(a+ib)π − e−(a+ib)π = 0
which contradicts our assumptin that e(a+ib)π − e−(a+ib)π 6= 0. (One could also satisfy the last
equation with A = B = 0 which is not satisfactory solution for quantum mechanics.) If on the
other hand

e(a+ib)π − e−(a+ib)π = 0 ,

then
e2aeib(2π) = 1 and e2ae−ib(2π) = 1

which implies e4a = 1 which implies a = 0 which implies that eib(2π) = 1 which implies b is an
integer. Thus, for the exponential solution case, we conclude that the only allowed mℓ values
are given by

mℓ = 0,±1,±2,±3, . . .

and the general exponential solution is

Φ = Aei|mℓ|φ +Be−i|mℓ|φ .
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For the linear solution
Φ = Aφ+B ,

single-valuedness and continuity require that A = 0. The constant solution is just the mℓ = 0
solution again.

c) Say we parameterize the eigenvalues as mℓh−. Thus, the eigenproblem is

LzΦ = mh−Φ .

The solutions that satisfy single-valuedness and continuity based on parts (a) and (b) are
obviously

Φ = eimℓφ

where
mℓ = 0,±1,±2,±3, . . .

The azimuthal angle parts of the hydrogenic atom wave function can be constructed from the
eigenstates of the Lz operator.

d) By inspection, all the allowed normalized solutions are given by

Φ =
1√
2π
eimφ .

Redaction: Jeffery, 2001jan01

012 qmult 00050 1 1 1 easy memory: hydrogen atom, 2-body
11. The hydrogen atom is the simplest of all neutral atoms because:

a) it is a 2-body system. b) it is a 3-body system. c) it has no electrons.
d) it has many electrons. e) hydrogen is the most abundant element in the universe.

SUGGESTED ANSWER: (a)

Wrong answers:

e) It is the most abundant element in the universe. But this doesn’t make it the simplest element.
In fact perhaps it is the other way: because it is the simplest element, it is most abundant.
However, even this is not necessarily so. The abundances of the elements depend on how things
were cooked up in the beginning. A different set of initial conditions would lead to different
universal abundances.

Redaction: Jeffery, 2001jan01

012 qmult 00100 1 1 3 easy memory: radial wave function requirements
12. What basic requirements must the radial part of hydrogenic atom wave function meet in order to be a

physical radial wave function?

a) Satisfy the radial part of the Schrödinger equation and grow exponentially as r → ∞.
b) Not satisfy the radial part of the Schrödinger equation and grow exponentially as r → ∞.
c) Satisfy the radial part of the Schrödinger equation and be normalizable.
d) Not satisfy the radial part of the Schrödinger equation and be normalizable.
e) None at all.

SUGGESTED ANSWER: (c) The Schrödinger equation is our basics physics in nonrelativistic
quantum mechanics. It must be satisfied. And of course a radial function must also be normalizable
(i.e., be square-integrable).

Wrong Answers:

b) Everything is wrong.
e) Oh c’mon.

Redaction: Jeffery, 2001jan01
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012 qmult 00200 1 4 1 easy deducto-memory: associated Laguerre polyn.
13. What special functions are factors in the radial part of the of the hydrogenic atom eigenstate wave

functions?

a) The associated Laguerre polynomials. b) The unassociated Laguerre polynomials.
c) The associated Jaguar polynomials. d) The unassociated jaguar polynomials.
e) The Hermite polynomials.

SUGGESTED ANSWER: (a)

Wrong Answers:

e) These are factors in the simple harmonic oscillator wave functions.

Redaction: Jeffery, 2001jan01

012 qmult 01000 1 4 1 easy deducto-memory: atomic spectroscopy
14. Almost all would agree that the most important empirical means for learning about atomic energy

eigenstates is:

a) spectroscopy. b) microscopy. c) telescopy. d) pathology. e) astrology.

SUGGESTED ANSWER: (a)

Wrong Answers:

e) It doesn’t even pretend to reveal atomic energy eigenstates.

Redaction: Jeffery, 2001jan01

013 qmult 00910 1 1 3 easy memory: vector model
15. In the vector model for angular momentum of a quantum system with the standard axis for the

eigenstates being the z axis, the particles in the eigenstates are thought of as having definite z-
components of angular momentum m⊃h− and definite total angular momenta of magnitude

√

j(j + 1)h−,
where j can stand for orbital, spin, or total angular momentum quantum number and mj is the z-
component quantum number. Recall j can be only be integer or half-integer and there are 2j+1 possible
values of mj given by −j,−j + 1, . . . , j − 1, j. The x-y component of the angular momementum has

magnitude
√

j(j + 1) −m2
j h
−, but it has no definite direction. Rather this component can be thought of

as pointing all x-y directions in simultaneous: i.e., it is in a superposition state of all direction states and
is equally likely to be found in any of them. Diagramatically, the momentum vectors can be represented
by

a) cones with axis aligned with the x-axis. b) cones with axis aligned with the y-axis.
c) cones with axis aligned with the z-axis. d) cones with axis aligned with the x-y-axis.
e) the cones of silence.

SUGGESTED ANSWER: (c)

Wrong answers:

e) “I demand the cones of silence Chief.”
“But Max you know those never work.”
“I insist Chief.”
Whirr.
“What did you say?”

Redaction: Jeffery, 2008jan01
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Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they are
neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so
some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998× 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

e = 1.602176487(40)× 10−19 C

ERydberg = 13.60569193(34) eV

ge = 2.0023193043622 (electron g-factor)

h = 6.62606896(33)× 10−34 J s = 4.13566733(10)× 10−15 eV s

hc = 12398.419 eVÅ ≈ 104 eV Å

h− = 1.054571628(53)× 10−34 J s = 6.58211899(16)× 10−16 eV s

k = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23),MeV

α = e2/(4πǫ0h−c) = 7.2973525376(50)× 10−3 = 1/137.035999679(94) ≈ 1/137

λC = h/(mec) = 2.4263102175(33)× 10−12 m = 0.0024263102175(33) Å

µB = 5.7883817555(79)× 10−5 eV/T

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

3 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]

sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

4 Blackbody Radiation
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Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

E = hν =
hc

λ
p =

h

λ

F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)

5 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

6 Matter Waves
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λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫ ∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

7 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t

ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗iφj dx = δij cj =

∫ b

a

φ∗jf(x) dx

[A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫ ∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ

|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫ ∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫ ∞

−∞

dx 〈Ψi|x〉〈x|Ψj〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x)

P
dfe/o(x)

dx
= ∓dfe/o(x)

dx

8 Spherical Harmonics
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Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .

s p d f g h i . . .

9 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a0

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
mreduced =

m1m2

m1 +m2

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
≈ −13.606× Z2

n2

mreduced

me
eV

10 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns
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β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′
obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2

E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)

τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


