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Modern Physics: Physics 305, Section 1

NAME:

Homework 7: The Hydrogenic Atom: Homeworks are due as posted on the course web site. They are
NOT handed in. The student reports that it is completed and receives one point for this. Solutions are
already posted, but students are only permitted to look at the solutions after completion. The solutions are
intended to be (but not necessarily are) super-perfect and go beyond a complete answer expected on a test.

1. In a central-force problem, the magnitude of central force depends only on:

a) the angle of the particle.
b) the vector ~r from the center to the particle.
c) the radial distance r from the center to the particle.
d) the magnetic quantum number of the particle.
e) the uncertainty principle.

2. The usual approach to getting the eigenfunctions of the Hamiltonian in multi-dimensions is:

a) non-separation of variables. b) separation of variables. c) separation of invariables.
d) non-separation of invariables. e) non-separation of variables/invariables.

3. Say you have a differential equation of two independent variables x and y and you want to look for
solutions that can be factorized thusly f(x, y) = g(x)h(y). Say then it is possible to reorder equation
into the form

LHS(x) = RHS(y) ,

where LHS stands for left-hand side and RHS for right-hand side. Well LHS is explicitly independent
of y and implicitly independent of x:

∂LHS

∂y
= 0 and

∂LHS

∂x
=
∂RHS

∂x
= 0 .

Thus, LHS is equal to a constant C and necessarily RHS is equal to the same constant C which is called
the constant of separation (e.g., Arf-383). The solutions for g(x) and h(y) can be found separately
and are related to each other through C. The solutions for f(x, y) that cannot be factorized are not
obtained, of course, by the described procedured. However, if one obtains complete sets of g(x) and h(y)
solutions for the x-y region of interest, then any solution f(x, y) can be constructed at least to within
some approximation (WA-510). Thus, the generalization of the described procedure is very general and
powerful. It is called: then

a) separation of the left- and right-hand sides. b) partitioning.
c) separation of the variables. d) solution factorization. e) the King Lear method.

4. “Let’s play Jeopardy! For $100, the answer is: By writing the two-body Schrödinger equation in
relative/center-of-mass coordinates.”

How do you , Alex?

a) reduce a ONE-BODY problem to a TWO-BODY problem
b) reduce a TWO-BODY problem to a ONE-BODY problem
c) solve a one-dimensional infinite square well problem
d) solve for the simple harmonic oscillator eigenvalues
e) reduce a TWO-BODY problem to a TWO-BODY problem

5. The formula for the reduced mass m for two-body system (with bodies labeled 1 and 2) is:

a) m = m1m2. b) m =
1

m1m2
. c) m =

m1 +m2

m1m2
. d) m =

m1m2

m1 +m2
. e) m =

1

m1
.

6. The eigensolutions of the angular part of the Hamiltonian for the central force problem are the:

a) linear harmonics. b) spherical harmonics. c) square harmonics.
d) Pythagorean harmonics. e) Galilean harmonics.
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7. Just about the only spherical harmonic that people remember—and they really should remember it
too—is Y00 =:

a) eimφ. b) r2. c)
1√
4π

. d) θ2. e) 2a−3/2e−r/a.

8. Conventionally, the spherical harmonic eigenstates for angular momentum quantum numbers

ℓ = 0, 1, 2, 3, 4, ...

are designated by:

a) a, b, c, d, e, etc.
b) s, p, d, f , and then alphabetically following f : i.e., g, h, etc.
c) x, y, z, xx, yy, zz, xxx, etc.
d) A, C, B, D, E, etc.
e) $@%&*!!

9. The 2-body time-independent Schrödinger equation is

− h−2

2m1
∇2

1ψ − h−2

2m2
∇2

2ψ + V ψ = Etotalψ .

If the V depends only on ~r = ~r2 − r1 (the relative vector), then the problem can be separate into
two problems: a relative problem 1-body equivalent problem and a center-of-mass 1-body equivalent
problem. The center of mass vector is

~R =
m1~r1 +m2~r2

M
,

where M = m1 +m2.

a) Determine the expressions for ~r1 and ~r2 in terms of ~R and ~r.

b) Determine the expressions for ∇2
1 and ∇2

2 in terms of ∇2
cm (the center-of-mass Laplacian operator)

and ∇2 (the relative Laplacian operator). Then re-express kinetic operator

− h−2

2m1
∇2

1 −
h−2

2m2
∇2

2

in terms of ∇2
cm and ∇2. HINTS: The x, y, and z direction components of vectors can all be

treated separately and identically since x components of ~R and ~r) (i.e., X and x) depend only on
x1 and x2, etc. You can introduce a reduced mass to make the transformed kinetic energy operator
simpler.

c) Now separate the 2-body Schrödinger equation assuming V = V (~r ). What are the solutions of the
center-of-mass problem? How would you interpret the solutions of the relative problem? HINT:

I’m only looking for a short answer to the interpretation question.

10. In the central force problem the separated azimuthal part of the Schrödinger equation is:

d2Φ

dφ2
= −m2

ℓΦ ,

where −m2
ℓ is the constant of separation for the azimuthal part. The constant has been parameterized in

terms ofmℓ (which is not mass) since it turns out that for normalizable (and therefore physically allowed)
solutions that m must be an integer. The mℓ quantity is the z-component angular momentum quantum
number or magnetic quantum number (MEL-59; ER-240). The latter name arises since the z-components
of the angular momentum manifest themselves most noticeably in magnetic field phenomena.

a) Since the differential equation is second order, there should should be two independent solutions
for each value of m2

ℓ . Solve for the general solution Φ for each m2
ℓ : i.e., the solution that is a linear

combination of the two independent solutions with undetermined coefficients. Note that writing
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the separation constant as m2
ℓ is so far just a parameterization and nothing yet demands that m2

ℓ

be greater than zero or pure real. HINT: Use an exponential trial function with exponent ±(a+ib)
with a and b real. Also remember the special case of m2

ℓ = 0.

b) Impose the single-valuedness and continuity condition for quantum mechanical solutions on

Φ = Ae(a+ib)φ +Be−(a+ib)φ ,

and show that a = 0 and mℓ must be an integer. What happens to the special case where mℓ = 0?

c) What are the eigenfunction solutions for the z-component of the angular momentum operator

Lz =
h−
i

∂

∂φ
.

What are the eigenvalues that satisfy single-valuedness and continuity? What is the relationship
between these eigenfunction solutions and the azimuthal angle part of the hydrogenic atom wave
functions?

d) Normalize the allowed eigensolutions of Lz Note these solutions are in fact conventionally left
unnormalized: i.e., the coefficient of the special function that is the solution is left as just 1.
Normalization is conventionally imposed on the total orbital angular momentum solutions, spherical
harmonics.

11. The hydrogen atom is the simplest of all neutral atoms because:

a) it is a 2-body system. b) it is a 3-body system. c) it has no electrons.
d) it has many electrons. e) hydrogen is the most abundant element in the universe.

12. What basic requirements must the radial part of hydrogenic atom wave function meet in order to be a
physical radial wave function?

a) Satisfy the radial part of the Schrödinger equation and grow exponentially as r → ∞.
b) Not satisfy the radial part of the Schrödinger equation and grow exponentially as r → ∞.
c) Satisfy the radial part of the Schrödinger equation and be normalizable.
d) Not satisfy the radial part of the Schrödinger equation and be normalizable.
e) None at all.

13. What special functions are factors in the radial part of the of the hydrogenic atom eigenstate wave
functions?

a) The associated Laguerre polynomials. b) The unassociated Laguerre polynomials.
c) The associated Jaguar polynomials. d) The unassociated jaguar polynomials.
e) The Hermite polynomials.

14. Almost all would agree that the most important empirical means for learning about atomic energy
eigenstates is:

a) spectroscopy. b) microscopy. c) telescopy. d) pathology. e) astrology.

15. In the vector model for angular momentum of a quantum system with the standard axis for the
eigenstates being the z axis, the particles in the eigenstates are thought of as having definite z-
components of angular momentum m⊃h− and definite total angular momenta of magnitude

√

j(j + 1)h−,
where j can stand for orbital, spin, or total angular momentum quantum number and mj is the z-
component quantum number. Recall j can be only be integer or half-integer and there are 2j+1 possible
values of mj given by −j,−j + 1, . . . , j − 1, j. The x-y component of the angular momementum has

magnitude
√

j(j + 1) −m2
j h
−, but it has no definite direction. Rather this component can be thought of

as pointing all x-y directions in simultaneous: i.e., it is in a superposition state of all direction states and
is equally likely to be found in any of them. Diagramatically, the momentum vectors can be represented
by

a) cones with axis aligned with the x-axis. b) cones with axis aligned with the y-axis.
c) cones with axis aligned with the z-axis. d) cones with axis aligned with the x-y-axis.
e) the cones of silence.
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Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they are
neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so
some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998× 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

e = 1.602176487(40)× 10−19 C

ERydberg = 13.60569193(34) eV

ge = 2.0023193043622 (electron g-factor)

h = 6.62606896(33)× 10−34 J s = 4.13566733(10)× 10−15 eV s

hc = 12398.419 eVÅ ≈ 104 eV Å

h− = 1.054571628(53)× 10−34 J s = 6.58211899(16)× 10−16 eV s

k = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23),MeV

α = e2/(4πǫ0h−c) = 7.2973525376(50)× 10−3 = 1/137.035999679(94) ≈ 1/137

λC = h/(mec) = 2.4263102175(33)× 10−12 m = 0.0024263102175(33) Å

µB = 5.7883817555(79)× 10−5 eV/T

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

3 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]

sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

4 Blackbody Radiation
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Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

E = hν =
hc

λ
p =

h

λ

F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)

5 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

6 Matter Waves
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λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫ ∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

7 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t

ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗iφj dx = δij cj =

∫ b

a

φ∗jf(x) dx

[A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫ ∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ

|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫ ∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫ ∞

−∞

dx 〈Ψi|x〉〈x|Ψj〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x)

P
dfe/o(x)

dx
= ∓dfe/o(x)

dx

8 Spherical Harmonics
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Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .

s p d f g h i . . .

9 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a0

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
mreduced =

m1m2

m1 +m2

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
≈ −13.606× Z2

n2

mreduced

me
eV

10 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns
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β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′
obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2

E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)

τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


