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Modern Physics: Physics 305, Section 1

NAME:

Homework 5: Non-Relativistic Quantum Mechanics Homeworks are due as posted on the course
web site. They are NOT handed in. The student reports that it is completed and receives one point for
this. Solutions are already posted, but students are only permitted to look at the solutions after completion.
The solutions are intended to be (but not necessarily are) super-perfect and go beyond a complete answer
expected on a test.

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 16. O O O O O

2. O O O O O 17. O O O O O

3. O O O O O 18. O O O O O

4. O O O O O 19. O O O O O

5. O O O O O 20. O O O O O

6. O O O O O 21. O O O O O

7. O O O O O 22. O O O O O

8. O O O O O 23. O O O O O

9. O O O O O 24. O O O O O

10. O O O O O 25. O O O O O

11. O O O O O 26. O O O O O

12. O O O O O 27. O O O O O

13. O O O O O 28. O O O O O

14. O O O O O 29. O O O O O

15. O O O O O 30. O O O O O
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1. The principle that all microscopic physical entities have both wave and particle properties is called the
wave-particle:

a) singularity. b) duality. c) triality. d) infinality. e) nullility.

2. “Let’s play Jeopardy! For $100, the answer is: The equation that governs (or equations that govern)
the time evolution of quantum mechanical systems in the non-relativistic approximation.”

What is/are , Alex?

a) ~Fnet = m~a b) Maxwell’s equations c) Einstein’s field equations of general relativity
d) Dirac’s equation e) Schrödinger’s equation

3. The full Schrödinger’s equation in compact form is:

a) HΨ = ih−∂Ψ

∂t
. b) HΨ = h−∂Ψ

∂t
. c) HΨ = i

∂Ψ

∂t
. d) HΨ = ih−∂Ψ

∂x
.

e) H−1Ψ = ih−∂Ψ

∂t
.

4. In the probabistic interpretation of wave function Ψ, the quantity |Ψ|2 is:

a) a probability density. b) a probability amplitude. c) 1. d) 0.
e) a negative probability.

5. The probability of finding a particle in differential region dx is:

a) Ψ(x, t) dx. b) Ψ(x, t)∗ dx. c) [Ψ(x, t)∗/Ψ(x, t)] dx. d) Ψ(x, t)2 dx.
e) Ψ(x, t)∗Ψ(x, t) dx = |Ψ(x, t)|2 dx.

6. “Let’s play Jeopardy! For $100, the answer is: It is an Hermitian operator that governs an dynamical
variable in quantum mechanics.”

What is an , Alex?

a) intangible b) intaglio c) obtainable d) oblivion e) observable

7. In quantum mechanics, a dynamical variable is governed by a Hermitian operator called an observable
that has an expectation value that is:

a) the most likely value of the quantity given by the probability density: i.e., the mode of the
probability density.

b) the median value of the quantity given by the probability density.
c) the mean value of the quantity given by the probability density.
d) any value you happen to measure.
e) the time average of the quantity.

8. The expectation value of operator Q for some wave function is often written:

a) Q. b) 〉Q〈. c) 〈Q〉. d) 〈f(Q)〉. e) f(Q).

9. These quantum mechanical entities (with some exceptions) must be:

i) Single-valued (and their derivatives too).
ii) finite (and their derivatives too).
iii) continuous (and their derivatives too).
iv) normalizable or square-integrable.

They are:
a) wave functions. b) observables. c) expectation values. d) wavelengths.
e) wavenumbers.

10. The momentum operator in one-dimension is:

a) h− ∂

∂x
. b)

h−
i

∂

∂x
. c)

i

h−
∂

∂x
. d)

i

h−
∂

∂t
. e) h− ∂

∂t
.

11. “Let’s play Jeopardy! For $100, the answer is: It describes a fundamental limitation on the accuracy
with which we can know position and momentum simultaneously.”
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What is , Alex?

a) Tarkovsky’s doubtful thesis b) Rublev’s ambiguous postulate
c) Kelvin’s vague zeroth law d) Schrödinger’s wild hypothesis
e) Heisenberg’s uncertainty principle

12. The time-independent Schrödinger equation is obtained from the full Schrödinger equation by:

a) colloquialism. b) solution for eigenfunctions. c) separation of the x and y variables.
d) separation of the space and time variables. e) expansion.

13. A system in a stationary state will:

a) not evolve in time. b) evolve in time. c) both evolve and not evolve in time.
d) occasionally evolve in time. e) violate the Heisenberg uncertainty principle.

14. For a Hermitian operator eigenproblem, one can always find (subject to some qualitifications perhaps—
but which are just mathemtical hemming and hawwing) a complete set (or basis) of eigenfunctions that
are:

a) independent of the x-coordinate. b) orthonormal. c) collinear. d) pathological.
e) righteous.

15. “Let’s play Jeopardy! For $100, the answer is: If it shares the same boundary conditions as a basis set
of functions and is at least piecewise continuous, then it can be expanded in the basis with a vanishing
limit of the mean square error between it and the expansion.”

What is a/an , Alex?

a) equation b) function c) triangle d) deduction e) tax deduction

16. “Let’s play Jeopardy! For $100, the answer is: The postulate that expansion coefficients of a wave
function in the eigenstates of an observable are the probability amplitudes for wave function collapse to
eigenstates of that observable.”

What is , Alex?

a) the special Born postulate b) the very special Born postulate c) normalizability
d) the mass-energy equivalence e) the general Born postulate

17. The expansion of a wave function in an observable’s basis (or complete set of eigenstates) is

a) just a mathematical decomposition. b) useless in quantum mechanics.
c) irrelevant in quantum mechanics. d) not just a mathematical decomposition since the
expansion coefficients are probability amplitudes. e) just.

18. “Let’s play Jeopardy! For $100, the answer is: It is a process in quantum mechanics that some decline to
mention, some believe to be unspeakable, some believe does not exist (though they got some explaining
to do about how one ever measures anything), some believe should not exist, and that some call the
fundamental perturbation (but just once per textbook).”

What is , Alex?

a) the Holy b) the Unholy c) the Unnameable d) the 4th secret of the inner circle
e) wave function collapse

19. “Let’s play Jeopardy! For $100, the answer is: A state that no macroscopic system can be in except
arguably for states of Bose-Einstein condensates, superconductors, superfluids and maybe others sort
of.”

What is a/an , Alex?

a) stationary state b) accelerating state c) state of the Union d) state of being
e) state of mind

20. A stationary state is:

a) just a special kind of classical state. b) more or less a kind of classical state.
c) voluntarily a classical state. d) was originally not a classical state, but grew into one.



4

e) radically unlike a classical state.

21. “Let’s play Jeopardy! For $100, the answer is: An equation that must hold in order for the non-
relativistic Hamiltonian operator and the operator ih−∂/∂t to both represent energy in the evaluation
of the energy expectation value for a wave function Ψ(x, t).”

What is , Alex?

a) the continuity equation b) the Laplace equation c) Newton’s 2nd law
d) Schrödinger’s equation e) Hamiton’s equation

22. Can the gravitational potential cause quantization of energy states?

a) No. b) It is completely uncertain. c) Theoretically yes, but experimentally no.
d) Experimental evidence to date (post-2001) suggests it can.
e) In principle there is no way of telling.

23. Given the following age distribution, compute its the normalization (i.e., the factor that normalizes the
distribution), mean, variance, and standard deviation. Also give the mode (i.e., the age with highest
frequency) and median.

Table: Age Distribution

Age Frequency
(years)

14 2
15 1
16 6
22 2
24 2
25 5

24. You are given a complete set of orthonormal stationary states (i.e., energy eigenfunctions) {ψn} and a
general wave equation Φ(x, t) for the same system: i.e., Φ(x, t) is determined by the same Hamiltonian
as the complete set. Find the general expression, simplified as far as possible, for expectation value 〈Hℓ〉
where ℓ is any positive (or zero) integer. Give the special cases for ℓ = 0, 1, and 2, and the expression
for σE . HINTS: Use expansion and orthonormality. This should be a very short answer: 3 or 4 lines.

25. Classically E ≥ Vmin for a particle in a conservative system.

a) Show that this classical result must be so. HINT: This shouldn’t be a from-first-principles proof:
it should be about one line.

b) The quantum mechanical analog is almost the same: Ē = 〈H〉 > Vmin for any state of the system
considered. Note the equality Ē = 〈H〉 = Vmin never holds quantum mechanically. (There is an
over-idealized exception, which we consider in part (e).) Prove the inequality. HINTS: The key
point is to show that 〈T 〉 > 0 for all physically allowed states. Use integration by parts.

c) Now show that result Ē > Vmin implies E > Vmin, where E is any eigen-energy of the system
considered. Note the equality E = Vmin never holds quantum mechanically (except for the over-
idealized system considered in part (e)). In a sense, there is no rest state for quantum mechanical
particle. This lowest energy is called the zero-point energy.

d) The E > Vmin result for an eigen-energy in turn implies a 3rd result: any ideal measurement always
yields an energy greater than Vmin Prove this by reference to a quantum mechanical postulate.

e) There is actually an exception to E > Vmin result for an eigen-energy where E = Vmin occurs. The
exception is for quantum mechanical systems with periodic boundary conditions and a constant
potential. In ordinary 3-dimensional Euclidean space, the periodic boundary conditions can only
occur for rings (1-dimensional systems) and sphere surfaces (2-dimensional systems) I believe. Since
any real system must have a finite size in all 3 spatial dimensions, one cannot have real systems with
only periodic boundary conditions. Thus, the exception to the E > Vmin result is for unrealistic over-
idealized systems. Let us consider the idealized ring system as an example case. The Hamiltonian
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for a 1-dimensional ring with a constant potential is

H = − h−2

2mr2
∂2

∂φ2
+ V ,

where r is the ring radius, φ is the azimuthal angle, and V is the constant potential. Find the eigen-
functions and eigen-energies for the Schrödinger equation for the ring system with periodic boundary
conditions imposed. Why must one impose periodic boundary conditions on the solutions? What
solution has eigen-energy E = Vmin?

26. If there are no internal degrees of freedom (e.g., spin) and they are normalizable, then one-particle,
1-dimensional energy eigenstates are non-degenerate. We (that is to say you) will prove this.

a) Assume you have two degenerate 1-dimensional energy eigenstates for Hamiltonian H : ψ1 and ψ2.
Prove that ψ1ψ

′

2 − ψ2ψ
′

1 equals a constant where the primes indicate derivative with respect to
x the spatial variable. HINT: Write down the eigenproblem for both ψ1 and ψ2 and do some
multiplying and subtraction and integration.

b) Prove that the constant in part (a) result must be zero. HINT: To be physically allowable
eigenstates, the eigenstates must be normalizable.

c) Show for all x that
ψ2(x) = Cψ1(x) ,

where C is a constant. HINT: The eigenproblem is a linear, homogeneous differential equation.
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Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they are
neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so
some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

2 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]

sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

3 Blackbody Radiation

Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

k = 1.3806505(24)× 10−23 J/K c = 2.99792458× 108 m

h = 6.6260693(11)× 10−34 J s = 4.13566743(35)× 10−15 eV s

h− =
h

2π
= 1.05457168(18)× 10−34 J s

hc = 12398.419 eVÅ ≈ 104 eV Å E = hν =
hc

λ
p =

h

λ
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F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)

4 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

λC =
h

mec
= 2.426310238(16)× 10−12 m e = 1.602176487(40)× 10−19 C

me = 9.1093826(16)× 10−31 kg = 0.510998918(44)MeV

mp = 1.67262171(29)× 10−27 kg = 938.272029(80)MeV

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

5 Matter Waves
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λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫

∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫

∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

6 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t

ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗i φj dx = δij cj =

∫ b

a

φ∗jf(x) dx [A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫

∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V − E)ψ

|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫

∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫

∞

−∞

dx 〈Ψ|x〉〈x|Ψ〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x) P

dfe/o(x)

dx
= ∓dfe/o(x)

dx

7 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns
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β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′

obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2

E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)

τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


