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Modern Physics: Physics 305, Section 1

NAME:

Homework 2: Blackbody Radiation Homeworks are due as posted on the course web site. They are
NOT handed in. The student reports that it is completed and receives one point for this. Solutions are
already posted, but students are only permitted to look at the solutions after completion. The solutions are
intended to be (but not necessarily are) super-perfect and go beyond a complete answer expected on a test.

1. “Let’s play Jeopardy! For $100, the answer is: A thought experiment (which can actually be done) that
has been used for arguing for absolute space as a physically active thing.”

What is , Alex?

a) Newton’s bucket experiment b) Maxwell’s demon experiment
c) Einstein’s elevator experiment d) Bohr’s microscope experiment
e) Schrödinger’s cat experiment

2. Ersnt Mach (1838–1916), a Czech-Austrian physicist, is noted for Mach’s principle (first so called by
Einstein). This principle, which is really vague hypothesis, is that inertia is determined somehow by
the universal distribution of mass. How it does so and what formulae apply have never adequately
established. Mach is also famous:

a) for Mach number. This is the speed of an object relative to a fluid medium in units of the sound
speed in that medium.

b) in ornithology. He is the eponym of the Machingbird.

c) for work in pyrology. You’ve heard of machsticks.

d) the invention of the mach: a kind of cooking pan.

e) for his forceful character whence “macho”, “machismo”, and “Sado-Machocism”.

3. “Let’s play Jeopardy! For $100, the answer is: It is the vague hypothesis that the bulk distribution of
matter in the universe determines the inertial mass of bodies.”

What is , Alex?

a) Zeno’s paradox b) Fermat’s last theorem c) Mach’s principle
d) Poincaré’s conjecture e) the Merton thesis

4. The blackbody radiation spectrum depends only on the:

a) density of the receiver. b) density of the emitter. c) temperature of the receiver.
d) temperature of the emitter. e) the color of the emitter.

5. The density of wavenumber states in wavenumber space (or k-space) per space space volume V in the
continuum limit for the box-quantization system (or particle-in-a-box system) is:

a) linear 1/V . b) independent of V . c) linear in V . d) quadratic in V .
e) cubic in V .

6. “Let’s play Jeopardy! For $100, the answer is: The person who first proposed that energy states of
microscopic systems could form a discrete (or quantized) set instead of a continuum.”

Who is , Alex?

a) Thomas Young (1773–1829) b) Lord Rayleigh (1842–1919)
c) Max Planck (1858–1947) d) Wilhelm Wien (1864–1928) e) James Jeans (1877–1946)

7. You have an incompressible fluid of density ρ in a bucket. The bucket is rotating at angular speed ω.
Due to viscosity the fluid has come to a steady state where it is co-rotating with the bucket: i.e., each
fluid element is rotating with angular speed ω. In the rotating frame of the bucket the fluid is at rest.
The bucket frame is, of course, non-inertial, but it can be treated as an inertial frame by introducing
the centrifugal force (which is categorized as an inertial or fictitious force). Since fluid is at rest in the
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rotating frame, the Coriolis force (another inertial force) is zero (Fr-523). The external air pressure is
assumed to be a constant pext.

a) Why can we assume the external air pressure is a constant?

b) In a general sense, what do you expect the shape of the surface of the water to be. HINT: Try
swirling water in a clear glass. In a rough qualitative way it only matters that the water is rotating
something like a rigid rotator: the cup doesn’t have to be.

c) What is the centrifugal force per unit mass in a rotating frame (treated as an inerital frame)? Take
r to be the horizontal coordinate measured from axis of rotation. HINT: In the rotating frame, the
centrifugal force is the force that cancels the centripetal force on any body at rest in the rotating
frame. The centrifugal force is always present in the rotating frame no matter what other forces
are acting.

d) Derive the expression for static equilibrium pressure in the vertical direction y taking y positive as
upward. Leave the constant of integration undetermined for the moment: it will depend on r and
pext.

e) Derive the expression for static equilibrium pressure in the horizontal direction r. This is done
treating the rotating frame as a static reference frame with a centrifugal force. Leave the constant
of integration undetermined for the moment: it will depend on y and pext. HINT: Consider the
inner and outer horizontal pressures on a differential hollow cylinder of thickness dr and mean
surface area dA centered on the rotation axis.

f) Set the zero level of y to be the height of the fluid at the r = 0 point. Now combine the two pressure
expressions with the boundary condition p(r = 0, y = 0) = pext, to find pressure as a function of r
and y. HINT: Pressure must have a unique value for each location (r, y).

g) From the general pressure expression found in the part (f) answer, determine the formula for the
height y of the surface as a function of r.

8. The standard wave equation in 1 dimension is

∂2y

∂x2
=

1

v2

∂2y

∂t2
,

where y is the oscillating quantity, x is the 1 space dimension, t is time, and v is the constant phase
speed of wave propagation (WA-710). Because this differential equation has more than one independent
variable (it has x and t as independent variables), it is a partial differential equation.

a) Verify that f(x − vt) is a general traveling wave solutions of the wave equation where f(x) is any
function. What is the initial condition of the solution? What is the direction of propagation of the
solution? Consider the wave system as nonrelativistic.

b) In quantum mechanics, it is traditional to write the argument of a 1-dimensional wave as kx − ωt
(rather than x − vt), where k is the wavenumber and ω is the angular frequency. The ω is always
taken as positive and the sign of k determines the direction of a traveling wave: k > 0 gives travel
in the positive direction and k < 0 gives travel in the negative direction.

Since the wave equation is a linear equation, any two solutions can be added to give another
solution. You are given two traveling wave solutions A sin(kx − ωt) and A sin(−kx − ωt), where A
is a constant amplitude, k is a positive wave number, ω is angular frequency, and ω/|k| = v, the
phase speed. What is the superposition of the waves (i.e., what is their sum) and what does this
superposition amount to physically. HINT: The trivial answer is not an answer.

9. Prove the Stirling’s approximation version

ln(N !) ≈

(

N +
1

2

)

ln(N) − N +
3

2
−

3

2
ln

(

3

2

)

+
1

8N
,

where N is an integer greater than or equal to 1. For very large N (as in most of statistical mechanics),
one usually uses the simpler and more memorable approximation

ln(N !) ≈ N ln(N) − N .
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Actually, there is a more exact Stirling’s approximation. This is the real Stirling’s series given by Arf-
464 and WA-542. Both our Stirling approximation and the Stirling’s series become more accurate as N
increases. HINT: Write ln(N !) as a sum and approximate the sum by an analytical integral. A sketch
comparing the sum in histogram form and the integrand curve helps to get the best simple choices for
the integration boundaries. You will also need to a Taylor’s series expansion of a form ln(1 + x) for
small x.

10. There are several different ways of presenting the Planck or blackbody spectrum. They are all equivalent
in a sense, but each is most useful in some special case. The commonest one in astrophysical radiative
transfer circles is probably the frequency representation of the Planck specific intensity:

Bν =
2hν3

c2

1

[ehν/(kT ) − 1]
,

where h = 6.6260693(11) × 10−34 J s is Planck’s constant, c = 2.99792458 × 108 m/s is the vacuum
speed of light, ν is frequency (in hertz), k = 1.3806505(24)× 10−23 J/K is Boltzmann’s constant, and
T is temperature in kelvins. What Bν is the energy flow per unit time per unit area (perpendicular to
the flow direction) per unit frequency per unit solid angle. The energy flow in a particular frequency
differential dν is Bν dν.

Now if you want the wavelength (i.e., λ) representation, note that

ν =
c

λ
and dν = −

c

λ2
dλ .

For an equivalent energy flow to Bν dν in the wavelength representation, one sets

Bλ dλ = Bν dν

from which it follows that

Bλ = Bν
dν

dλ
= Bν

c

λ2
=

2hc2

λ5

1

[ehc/(kTλ) − 1]
,

where we got rid of the minus sign for darn good reasons. One should really write Bλ dλ = Bν dν as
Bλ(−dλ) = Bν dν to account for the fact that a differential increase in ν is a differential decrease in λ
and we are trying to equate energy flows in a particular band: but no one ever does this since it looks
odd: we just know enough to suppress the minus sign.

What is the energy flux Fν (energy per unit radiating area per unit time per unit frequency [in
the frequency representation]) from a surface radiating like a blackbody? Well imagine a differential
patch of surface area dA with outward pointing normal vector: let the angle from normal direction
be θ. The amount of area presented by dA perpendicular to a specific intensity beam flowing out
at angle θ is dA cos θ which a simple diagram will show. Thus, the differential bit of energy flux
emerging from dA in differential solid angle sin θ dθ dφ (where φ is the azimuthal angle) is

dFν = Bν cos θ sin θ dθ dφ .

Since Bν is angle independent we can integrate for Fν at once:

Fν =

∫ 2π

0

∫ π/2

0

Bν cos θ sin θ dθ dφ = 2π

∫ 1

0

Bνµ dµ = πBν =
2πhc2

λ5

1

[ehc/(kTλ) − 1]
,

where we have used the transformation µ = cos θ and dµ = − sin θ dθ. So the difference between
Planck specific intensity and Planck flux is a pesky little factor of π.

What is the Planck energy density Eν? Well specific intensity divided by c is the energy density
per unit solid angle. The energy density per unit solid angle is Eν/(4π) since the Planck radiation
field is isotropic since it is all a thermodynamic equilibrium radiation field. The division by c can
most easily be understood by writing

Bν = c
Eν

4π

and saying (to oneself if no one else) the amount of energy through a bit of area dA perpendicular
to the direction of flow in a time dt from a box of volume dAds (where s is the coordinate along
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the flow direction) is the energy moving in the direction of flow [Eν/(4π)] dAds. If one asks for the
flow per unit area per unit time (which is just Bν), one has Eν/(4π)]ds/dt, but photons move at
the speed of light and so ds/dt = c. So we get the last equation, and so one finds

Eν =
4π

c
Bν =

8πhν3

c2

1

[ehν/(kT ) − 1]
.

In the wavelength representation one has, of course,

Eλ =
4π

c
Bλ =

8πhc2

λ5

1

[ehc/(kTλ) − 1]
,

which is just ER-19’s equation for the energy density.
Wasn’t all that edifying. Now on to the problem.

a) Integrate

Fν =
2πhc2

λ5

1

[ehc/(kTλ) − 1]

over all frequency to find Stefan’s Law
F = σT 4 ,

where F is the fequency-integrated flux and σ = 5.670400(40) × 10−8 W/m2/K4. You should be
able to find σ in terms of fundamental constants. HINT: Change the integration variable to
x = hν/(kT ), remember the geometric series

1

1 − x
=

∞
∑

n=0

xn for |x| < 1 ,

note the factorial function

z! =

∫

0

tze−t dt

which for z a positive integer n is just n! (Arf-453), and note the Riemann zeta function

ζ(s) =

∞
∑

n=1

n−s for s > 1

(Arf-282) gives ζ(4) = π4/90 (Arf-285).

b) Now prove the Wien displacement law:

λmaxT = constant

where λmax is the maximum of Bλ and the Wien constant is 2.8977685(51)× 10−3 mK. Actually
the constant cannot be determined exactly analytically. So find a first approximation. HINT: Let
x = hc/(kTλ) and find

dBλ

dλ
=

dBλ

dx

dx

dt
.

The maximum of Bλ occurs for dBλ/dx = 0. Find the maximizing x value to a good first
approximation and then the approximate Wien constant.



5

Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material. Therefore they are
neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so
some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

2 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a − b) + cos(a + b)] sin(a) sin(b) =

1

2
[cos(a − b) − cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

3 Blackbody Radiation

Bν =
2hν3

c2

1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= −

c

λ2

k = 1.3806505(24)× 10−23 J/K c = 2.99792458× 108 m

h = 6.6260693(11)× 10−34 J s = 4.13566743(35)× 10−15 eV s

h− =
h

2π
= 1.05457168(18)× 10−34 J s

hc = 12398.419 eVÅ ≈ 104 eV Å E = hν =
hc

λ
p =

h

λ
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F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈

1.4387751× 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν

ln(z!) ≈

(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
−

1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) − N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x − vt) f(kx − ωt)

4 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

λC =
h

mec
= 2.426310238(16)× 10−12 m e = 1.602176487(40)× 10−19 C

me = 9.1093826(16)× 10−31 kg = 0.510998918(44)MeV

mp = 1.67262171(29)× 10−27 kg = 938.272029(80)MeV

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

5 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns
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β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x − βτ x′ = γ(x − βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′

obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2

E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 − m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)

ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 −
1

2
β2

)

τ = βx + γ−1τ ′ for lines of constant τ ′

τ =
x − γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′

x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′

τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


