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Modern Physics 305: 2nd Exam NAME:

2008 April 23 Wednesday

Instructions: There are 10 multiple-choice questions each worth 2 marks for a total
of 20 marks altogether. Choose the BEST answer, completion, etc., and darken fully the
appropriate circle on the table provided below. Read all responses carefully. NOTE long
detailed preambles and responses won’t depend on hidden keywords: keywords in such
preambles and responses are bold-faced capitalized.

There are THREE full answer questions each worth 10 marks for a total of 30 marks
altogether. Answer them all on the paper provided. It is important that you SHOW

(SHOW, SHOW, SHOW) how you got the answer.

This is a CLOSED-BOOK exam. NO cheat sheets allowed. An equation sheet is
provided. Calculators are permitted for calculations. Cell phones MUST be turned off.
The test is out of 50 marks altogether.

This a 50-minute test. Remember your name (and write it down on the exam too).

Answer Table for the Multiple-Choice Questions

a b c d e a b c d e

1. O O O O O 6. O O O O O

2. O O O O O 7. O O O O O

3. O O O O O 8. O O O O O

4. O O O O O 9. O O O O O

5. O O O O O 10. O O O O O
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001 qmult 00500 1 4 3 easy deducto-memory: Bohr atom
1. “Let’s play Jeopardy! For $100, the answer is: This model of an atom is of historical

and pedagogical interest, but it is of no use in modern practical calculations and from
the modern standpoint is probably misleading rather than insight-giving.”

What is , Alex?

a) Schrödinger’s model of the hydrogen atom
b) the Thomas-Fermi model of a many electron atom
c) Bohr’s model of the hydrogen atom d) the liquid drop model of the atom
e) the model hydrogen atom of Leucippos and Democritos

SUGGESTED ANSWER: (c) That the Bohr model exists is sort of an
accident of nature. As far as I can see, it’s interest nowadays is only historical
and pedagogical. Its picture of the atom seems to me to be somewhat misleading
even.

Wrong answers:

a) Schrödinger’s model of the hydrogen atom is the analytic solution of his
equation for that atom: this model the basis of all modern atomic physics.
We never call it the Schrödinger model though: all Schrödinger’s glory is
subsumed in his equation itself.

b) The Thomas-Fermi atom is still very useful.
d) The liquid drop model of the nucleus is still useful for insight.

e) The answer applies to the atoms of the ancient Greeks too, but not to this
particular question. Leucippos and Democritos never heard of hydrogen.

Redaction: Jeffery, 2001jan01

002 qmult 00600 1 4 5 easy deducto-memory: uncertainty principle
2. “Let’s play Jeopardy! For $100, the answer is: ∆x∆p ≥ h−/2 or σxσp ≥ h−/2.

What is , Alex?

a) an equality b) a standard deviation
c) the Heisenberg CERTAINTY principle d) the Cosmological principle
e) the Heisenberg UNCERTAINTY principle

SUGGESTED ANSWER: (e)

Wrong answers:

c) Don’t be fooled by that missing prefix.

Redaction: Jeffery, 2001jan01

002 qmult 00720 1 1 1 easy memory: stationary state
3. A system in a stationary state will:

a) not evolve in time. b) evolve in time.
c) both evolve and not evolve in time. d) occasionally evolve in time.
e) violate the Heisenberg uncertainty principle.
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SUGGESTED ANSWER: (a) The wave function itself will have the time
oscillation factor eiωt, but that is not considered time evolution of the state.

Wrong answers:

b) Exactly wrong.

Redaction: Jeffery, 2001jan01

002 qmult 00800 1 4 2 easy deducto-memory: orthogonality property
4. For a Hermitian operator eigenproblem, one can always find (subject to some

qualitifications perhaps—but which are just mathemtical hemming and hawwing) a
complete set (or basis) of eigenfunctions that are:

a) independent of the x-coordinate. b) orthonormal. c) collinear.
d) pathological. e) righteous.

SUGGESTED ANSWER: (b)

Wrong Answers:

e) Not the best answer in this context anyway.

Redaction: Jeffery, 2001jan01

002 qmult 00820 1 4 5 easy deducto-memory: general Born postulate
Extra keywords: mathematical physics

5. “Let’s play Jeopardy! For $100, the answer is: The postulate that expansion
coefficients of a wave function in the eigenstates of an observable are the probability
amplitudes for wave function collapse to eigenstates of that observable.”

What is , Alex?

a) the special Born postulate b) the very special Born postulate
c) normalizability d) the mass-energy equivalence
e) the general Born postulate

SUGGESTED ANSWER: (e)

Wrong answers:

b) As Lurch would say AAAARGH.

Redaction: Jeffery, 2008jan01

003 qmult 00300 1 1 3 easy memory: boundary conditions
6. Meeting the boundary conditions of bound quantum mechanical systems imposes:

a) Heisenberg’s uncertainty principle. b) Schrödinger’s equation.
c) quantization. d) a vector potential. e) a time-dependent potential.

SUGGESTED ANSWER: (c)

Wrong answers:

e) Nah.

Redaction: Jeffery, 2001jan01
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003 qmult 00500 1 4 2 easy deducto-memory: tunneling
7. “Let’s play Jeopardy! For $100, the answer is: This effect occurs because wave

functions can extend (in an exponentially decreasing way albeit) into the classically
forbidden region: i.e., the region where a classical particle would have negative kinetic
energy.”

What is , Alex?

a) stimulated radiative emission b) quantum mechanical tunneling
c) quantization d) symmetrization e) normalization

SUGGESTED ANSWER: (b)

Wrong answers:

d) Symmetrization is another fundamental property of quantum systems—but
beyond our scope.

Redaction: Jeffery, 2001jan01

011 qmult 00410 1 4 4 easy deducto-memory: spherical harmonics 2
Extra keywords: mathematical physics

8. “Let’s play Jeopardy! For $100, the answer is: They form a basis or complete set
for the 2-dimensional space of the surface a sphere which is usually described by the
angular coordinates of spherical polar coordinates.”

What are the , Alex?

a) Hermite polynomials b) Laguerre polynomials
c) associated Laguerre polynomials d) spherical harmonics
e) Chebyshev polynomials

SUGGESTED ANSWER: (d)

Wrong answers:

a) These turn up as factors in the solution of the 1-dimensional simple harmonic
oscillator problem.

c) These turn up as factors in the solution of the radial part part of the Coulomb
potential 2-body problem

e) These have uses in numerical computation.

Redaction: Jeffery, 2008jan01

011 qmult 00500 1 4 2 easy deducto-memory: spdf designations
9. Conventionally, the spherical harmonic eigenstates for angular momentum quantum

numbers
ℓ = 0, 1, 2, 3, 4, ...

are designated by:

a) a, b, c, d, e, etc.
b) s, p, d, f , and then alphabetically following f : i.e., g, h, etc.
c) x, y, z, xx, yy, zz, xxx, etc.
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d) A, C, B, D, E, etc.

e) $@%&*!!

SUGGESTED ANSWER: (b)

Wrong Answers:

a) This is the way it should be, not the way it is.

e) Only in Tasmanian devilish.

Redaction: Jeffery, 2001jan01

012 qmult 00190 1 1 2 easy memory: hydrogen wave functions

10. The hydrogenic atom eigenstate wave functions contain a factor that causes them to:

a) increase exponentially with radius. b) decrease exponentially with radius.
c) increase logarithmically with radius.
d) increase quadratically with radius. e) increase linearly with wavelength.

SUGGESTED ANSWER: (b) The wave function must decrease rapidly with
radius in order for it to be normalizable.

Wrong answers:

a) Exactly wrong.

Redaction: Jeffery, 2001jan01

012 qfull 02100 1 3 0 easy math: positronium solution

11. Positronium is an exotic atom consisting of an electron and its antiparticle the
positron. It was predicted to exist in 1934 (or even earlier) shortly after the
positron was discovered in 1932. Positronium was experimentally discovered in
1951. Positronium cannot exist long because the electron and positron will mutually
annihilate usually producing two γ-rays although more γ-rays are possible since
there are multiple modes of annihilation. Positronium frequenctly forms in exited
states and decays by radiative transitions to the ground state unless it annihilates
first by some mode. Positronium transition spectra and annihilation γ-ray spectra
provide a fine test of quantum mechanics and quantum electrodynamics. Neglecting
annihilation effects, spin effects, and relativistic effects, positronium to first order is
Schrödinger-solution hydrogenic atom. We just consider this simplified positronium
in this problem.

a) What are the positronium total mass and reduced mass?

b) What is the formula for the energy of the energy levels of positronium?

c) How does the emitted/absorbed photon of a positronium line transition (i.e.,
transition between energy levels) compare to the corresponding line transition
photon of the Schrödinger-solution HYDROGEN atom? By “corresponding”,
we mean that the photons result from transitions that have the same initial and
final principal quantum numbers.

SUGGESTED ANSWER:
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a) The total and reduced masses are, respectively,

m = 2me ≈ 1.82 × 10−30 kg and m =
m2

e

2me
=
me

2
= 4.6 × 10−31 kg .

Note we are neglecting the small change in mass due to binding energy since
that is a relativistic effect.

b) The general Schrödinger-solution hydrogenic atom energies are given by the
formula

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
≈ −13.606 × Z2

n2

mreduced

me
eV .

Specializing this formula for positronium (which has Z = 1) gives

En = −1

4
mec

2α2 1

n2
= −ERyd

2

1

n2
≈ −6.803 × 1

n2
eV .

c) The positronium photon has just a bit more than half the frequency and the
energy and just a bit less than twice the wavelength of the corresponding
Schrödinger-solution hydrogen atom photon. This is just because all the
energy-level energies of positronium have just a bit more than half those
of the Schrödinger-solution hydrogen atom. The slight difference from
having exactly “half” in the above statements is that the reduced mass
of positronium is me/2 while the reduced mass of the hydrogen atom is
slightly less than me because the proton mass is not infinite. The reduced
mass appears linearly in the energy level formula, and so all the positronium
energy levels are just a bit more than half the hydrogen atom energy levels.

Redaction: Jeffery, 2008jan01

003 qfull 00100 2 3 0 moderate math: infinite square well in 1-d
12. You are given the time-independent Schrödinger equation

Hψ(x) =

[

− h−2

2m

∂2

∂x2
+ V (x)

]

ψ(x) = Eψ(x)

and the infinite square well potential

V (x) =
{

0 , x ∈ [0, a];
∞ otherwise.

a) What must the wave function be outside of the well (i.e., outside of the region [0, a])
in order to satisfy the Schrödinger equation? Why?

b) What boundary conditions must the wave function satisfy? Why must it satisfy these
boundary conditions?
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c) Reduce Schrödinger’s equation inside the well to an equation of the same form as the
CLASSICAL simple harmonic oscillator differential equation with all the constants
combined into a factor of −k2, where k is newly defined constant. What is k’s
definition?

d) Solve for the general solution for a SINGLE k value, but don’t impose boundary
conditions or normalization yet. A solution by inspection is adequate. Why can’t we
allow solutions with E ≤ 0? Think carefully: it’s not because k is imaginary when
E < 0.

e) Use the boundary conditions to eliminate most of the solutions with E > 0 and to
impose quantization on the allowed set of distinct solutions (i.e., on the allowed k
values). Give the general wave function with the boundary conditions imposed and
give the quantization rule for k in terms of a dimensionless quantum number n. Note
that the multiplication of a wave function by an arbitrary global phase factor eiφ

(where φ is arbitrary) does not create a physically distinct wave function (i.e., does
not create a new wave function as recognized by nature.) (Note the orthogonality
relation used in expanding general functions in eigenfunctions also does not distinguish
eigenfunctions that differ by global phase factors either: i.e., it gives the expansion
coefficients only for distinct eigenfunctions. So the idea of distinct eigenfunctions
arises in pure mathematics as well as in physics.)

f) Normalize the solutions.

g) Determine the general formula for the eigenenergies in terms of the quantum number
n.

SUGGESTED ANSWER:

a) Outside the well any wave function is zero in order to satisfy the Schrödinger
equation. This is because if the potential goes to infinity over a finite region,
the only reasonable way to satisfy the Schrödinger equation is with a zero
wave function in that region.

b) For a finite potential the wave function and its 1st derivative must be
continuous: the 1st derivative is allowed to have kinks. If the potential
becomes infinite at a point, then the first derivative is allowed to have finite
discontinuities and the wave function is allowed to have kinks at that point.
In our case, all the well walls require by themselves is that the wave function
be continuous there and thus be zero there. It is known (but exactly how is
seldom gone into) that in this case no condition is imposed on the continuity
of the 1st derivative of the wave function and no condition is needed. I
append a note discussing the continuity of the wave function and its 1st
derivative below: it’s prolix.

c) Inside the well one has

Hψ = − h−2

2m

∂2ψ

∂x2
= Eψ .
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Defining

k =

√
2mE

h−
,

we obain
∂2ψ

∂x2
= −k2ψ .

This last equation has the same form as the classical simple harmonic
oscillator differential equation.

d) By inspection and lots of experience, the general solution for E > 0 is

ψ(x) = A sin(kx) +B cos(kx) ,

where A and B are constants. This solution, of course, only applies inside
the well. Outside of the well ψ = 0 everywhere.

We cannot allow E ≤ 0 as we show in the following. If we did allow
E ≤ 0, we would have the differential equation

∂2ψ

∂x2
= κ2ψ ,

where

κ =

√

2m|E|
h−

.

Note by our definition, k would be imaginary in this case, but that has no
consequence since the eigenvalues in our Hermitian operator equation for
E ≤ 0 are still real.

For E < 0, the general solution is

ψ = Aeκx +Be−κx ,

where A and B are constants. Neither of the terms of this solution are ever
zero (unless A = B = 0) and since one term is strictly increasing and the
other strictly decreasing, only one zero can be created by linear combination.
The linear combination that gives the one zero at any x satisfies the ratio

A

B
= −e−2κx .

Because there is only one zero at most, the E < 0 solution cannot satisfy the
boundary conditions and must be ruled out. For E = 0, the general solution
is

ψ = Ax+B ,

where A and B are constants. This solution can only be zero at one point
(unless A = B = 0), and thus cannot satisfy the boundary conditions and
must be ruled out. If A = B = 0 for E ≤ 0, the boundary conditions are
satisfied, but the solutions cannot be normalized, and so must be ruled out.
So all cases of E ≤ 0 give physically invalid solutions.
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Note there is a general proof that E > Vmin, except that E = Vmin

is allowed for a constant wave function solution to a system with periodic
boundary conditions: see the solution to the problem suggested by Griffiths’s
problem Gr-24:2.2. For the infinite square well, the boundary conditions are
not periodic and Vmin = 0. Thus we find that solutions must have E > 0 by
the general proof.

e) To satisfy the boundary conditions (ψ continuous, but no continuity
constraint on ∂ψ/∂x because of the infinite potential), we must have ψ(0) =
ψ(ka) = 0. Thus, B = 0 (i.e., no cosine solutions are allowed) and

k =
nπ

a
,

where n must be an integer. The fact that n must be an integer gives the
quantization of allowed states: the boundary conditions have imposed this
quantization, in fact. The number n is the dimensionless quantum number.

The n = 0 case gives a zero eigenfunction which cannot be normalized
and the negative n values because of the oddness of the sine function do
not give physically distinct solutions from their positive counterparts (i.e,
the −n values). Recall wave functions that differ by a global phase factor
(i.e., eiφ where φ is any number) are not physically distinct: nature does
not recognize them as different states. There are actually infinitely many
mathematical states for each physically distinct state.

Finally, we find that n runs over all positive integers only: n = 1, 2, 3, . . .
The allowed solutions are

ψn(x) = A sin
(nπ

a
x
)

.

A few other remarks can be made. We can see that k is in fact a
wavenumber since the solution is periodic for every ∆x = 2π/k. The
wavelength λ is in fact that ∆x:

λ =
2π

k
=

2a

n
.

Consequently, we find

n
λ

2
= a

which implies that the nth wave function will have n antinodes and n + 1
nodes. Two of the nodes are on the boundaries, of course.

f) For normalization we require

1 = A2

∫ a

0

sin2(kx) dx = A2 1

k

∫ ka

0

sin2(y) dy

= A2 1

2k

∫ ka

0

[1 − cos(2y)] dy = A2 1

2k

[

y − sin(2y)

2

]
∣

∣

∣

∣

ka=nπ

0

= A2 1

2k
(ka) = A2 a

2
,
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and thus

A =

√

2

a
,

where we have chosen A to be pure real. Thus the normalized general solution
is

ψn(x) =

√

2

a
sin

(nπ

a
x
)

.

g) The energy of the nth eigenstate is given by

En =
h−2
k2

2m
=

h−2

2m

(π

a

)2

n2 .

Thus the energies are quantized with n being the quantum number. The
quantization is imposed by the boundary conditions and the requirement of
normalizability. All bound quantum states are in fact quantized. But we
won’t prove that here.

NOTE: Herein we consider the continuity properties of the wave function
and its 1st derivative at some length. This note has never been perfected.
Once we go to the infinite potential case, it’s just maundering on and has to
be all cleaned up when I get a chance.

First note that the time independent Schrödinger equation leads directly
to the following integral

∂ψ

∂x

∣

∣

∣

∣

a+ǫ

− ∂ψ

∂x

∣

∣

∣

∣

a−ǫ

=

∫ a+ǫ

a−ǫ

dx
∂2ψ

∂x2
=

∫ a+ǫ

a−ǫ

dx
2m

h−2 [V (x) − E]ψ(x) ,

where a is any point and ǫ is a small displacement parameter. It is a given
that E is finite or zero. If the potential and wave function are finite or zero
everywhere, we find

lim
ǫ→0

[

∂ψ

∂x

∣

∣

∣

∣

a+ǫ

− ∂ψ

∂x

∣

∣

∣

∣

a−ǫ

]

= 0 .

This result follows even V or ψ(x) is discontinuous at a: the integral is still
of a finite integrand over a zero area in the limit that ǫ→ 0.

Thus the 1st derivative of the wave function must be continuous at points
of finite potential and wave function: kinks in the 1st derivative are allowed
in principle. But if the 1st derivative is continuous, then the wave function
itself must be continuous and kink-free. A kink in the wave function causes
a discontinuity in the 1st derivative and a discontinuity in the wave function
causes an infinite discontinuity in the 1st derivative.

To sum up, if V is finite or zero, then the wave function must be
continuous and kink-free. The 1st derivative is allowed have kinks. Note
V can be discontinuous.

Now what if potential goes to positive infinity? First let us consider
the case where there is an infinite potential over a finite region. We set one
boundary of the infinite wall at x = 0 for convenience.
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To find the solution let us first allow the potential to be a finite constant
V for x < 0. For x > 0, we set the potential to 0. I think we can always
consider zones close enough to the wall that the potential on either side
can be considered as constants. We assume 0 < E < V : I don’t think
this is unduly restrictive: recall E > Vmininim, except for periodic boundary
condition cases (Gr-24). The solutions close the wall are

ψ(x) = Aeκx and ψ(x) = B sin(kx) + C cos(kx) ,

where

κ = ±
√

2m

h−2 (V − E) and k = ±
√

2m

h−2 E .

Only the positive solution for κ is allowed by the normalizability condition.
We cannot specify A, B, and C exactly without defining the whole potential
and finding an expression for the whole wave function. We don’t want to do
that since we are trying to see if can get a general understanding.

Since we are first considering a finite wall, we require continuous wave
function and its 1st derivative. Thus at x = 0 we demand

A = C and Aκ = Bk .

Now if we let V become large, ψ(x < 0) must become small and thus A and
C must become small. But nothing demands that Bk become small since κ
is growing large as V grows large. If we let V → ∞, then A and C go to
zero, but Bk can stay non-zero since Aκ can stay non-zero and finite. In this
way wave function stays continuous at x = 0 and in a limiting sense so does
its 1st derivative even though in direct sense there is discontinuity in the 1st
derivative.

But does nature take the limit such that Aκ stays finite non-zero? Well
nature certainly doesn’t let Aκ go to infinity since that would make Bk go
to infinity which seems implausible. If Aκ goes to zero, then either B or k
goes to zero and then the wave function and its 1st derivative are both zero
at x = 0. If one requires the wave function and its 1st derivative to be zero
at the wall, then there are no solutions to the infinite square well problem.
We know in nature that systems approaching the infinite square well do have
a spectrum of solutions, and so conclude that does take the limit such that
Bk stays finite non-zero.

But one doesn’t really like to appeal to observation. Isn’t there some
general mathematical argument? Since for any specific system, there is a
mathematical solution for A and if it always gives Aκ = Bk for when V → ∞
(as we seem to think nature demands), then there must be some general
mathematical proof that Aκ = Bk for when V → ∞. But I can’t see what
it could be?

Maybe I’m being over-idealizing. There are no infinite potentials nor
even any finite, sharp wall potentials. Maybe nearly sharp finite wall
potential approximated as sharp infinite wall potential just allows one to use
only the continuity condition on the wave function because one is admitting
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at the outset one isn’t treating the wave function in the neighborhood of the
nearly sharp wall at all correctly. Anyway Gr-60 treats the finite square well,
but that doesn’t elucidate the general sharp wall case for me.

The following may be gibberish: I’ve no patience right now to figure out
if I was talking sense when I wrote it.

So far so good: now on to the pathological cases. Can the wave function
be infinite? Not over a finite region for that would give an infinite probability
of finding the particle in that region: a probability greater than 1 is not
allowed. Can we allow a Dirac delta region of the wave function? In the
limiting sense of a very highly peaked wave function region I don’t see
why not, but I confess I don’t know how to treat a Dirac delta function
magnitude squared (which is probability density). The 1st derivative could
be discontinuous across the Dirac delta function region, but only by a finite
amount. Thus the wave function will be continuous if kinked across the Dirac
delta region (not counting where it shoots to “infinity”). So in a sense the
wave function must be continuous even if it shoots at a point to a Dirac delta
infinity.

What if the potential shoots to a Dirac delta infinity at point a? Well
the 1st derivative can have a finite discontinuity, but the wave function must
stay continuous. But the wave function doesn’t have to go to zero at a. What
if the potential shoots to more than a Dirac delta infinity at a point. Well
this is a physically impossible case. No potential is really ever infinite and a
Dirac delta infinity is just a way of compress a very high potential that acts
over a small region into a neat mathematical form.
We leave further thought on this sine die.

We have considered an infinite wall, but what a about an infinite drop
potential. Well below the drop the drop looks like an infinite wall. So this
case reduces to the last. The particle is always on the drop side.

We could go on considering pathological cases all night, but enough
already. Infinite potentials are an idealization anyway. Still it’s necessary to
know how to treat them in the correct limiting way.

Redaction: Jeffery, 2001jan01

001 qfull 01100 2 5 0 moderate thinking: Bohr atom
13. In 1913, Niels Bohr presented his model of the hydrogen atom which was quickly

generalized to the hydrogenic atom (i.e., the one-electron atom of any nuclear
charge Z). This model correctly gives the main hydrogenic atom energy levels and
consists of a mixture of quantum mechanical and classical ideas. It is historically
important for showing that quantization is somehow important in atomic structure
and pedagogically it is of interest since it shows how simple theorizing can be done.
But the model is, in fact, incorrect and from the modern perspective probably even
misleading about the quantum mechanical nature of the atom. It is partially an
accident of nature that it exists to be found. Only partially an accident since it does
contain correct ingredients.

And it is no accident that Bohr found it. Bohr knew what he wanted: a model
that would successfully predict the hydrogen atom spectrum which is a line spectrum
showing emission at fixed frequencies. He knew from Einstein’s photoelectric effect
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theory that electromagnetic radiation energy was quantized in amounts hν where
h = 6.62606896(33)× 10−27 erg s was Planck’s constant (which was introduced along
with the quantization notion to explain black-body radiation in 1900) and ν was
frequency of the quantum of radiation. He recognized that Planck’s constant had
units of angular momentum. He knew from Rutherford’s nuclear model of the atom
that the positive charge of an atom was concentrated in region that was much smaller
than the atom size and that almost all the mass of the atom was in the nucleus. He
knew that there were negative electrons in atoms and they were much less massive
than the nucleus. He knew the structure of atoms was stable somehow. By a judicious
mixture of classical electromagnetism, classical dynamics, and quantum ideas he found
his model. A more sophisticated mixture of these concepts would lead to modern
quantum mechanics.

Let’s see if we can follow the steps of the ideal Bohr—not the Bohr of history.
NOTE: This a semi-classical question: Bohr, ideal or otherwise, knew nothing of the
Schrödinger equation in 1913. Also note that this question uses Gaussian CGS units
not MKS units. The most relevant distinction is that electric charge

eCGS =
eMKS√
4πǫ0

which implies the fine structure constant in CGS is

α =
e2

h−c
.

Astronomy is all Gaussian CGS by the way.

a) Bohr thought to build the electron system about the nucleus based on the
electrostatic inverse square law with the electron system supported against
collapse onto the nucleus by angular momentum. The nucleus was known to
be much tinnier than the electron system which gives the atom its volume. The
nucleus could thus be a considered an immobile point center of force at the origin
of the relative nucleus-electron coordinate system frame. This frame is non-
inertial, but classically can be given an inertial-frame treatment if the electron is
given a reduced mass given by

m =
memnucleus

me +mnucleus
≈ me

(

1 − me

mnucleus

)

,

where me the electron mass and mnucleus is the nucleus mass. The approximation
is valid for me/mnucleus << 1 which is true of hydrogen and most hydrogenic
systems, but not, for example, for positronium (a bound electron and positron).
The electron—there is only one in a hydrogenic atom—was taken to be in orbit
about the nucleus. Circular orbits seemed the simplest way to proceed. The
electrostatic force law (in Gaussian cgs units) in scalar form for a circular orbit
is

~F = −Ze
2

r2
r̂ ,

where Ze is the nuclear charge, e is the electron charge, and r is the radial distance
to the electron, and r̂ is a unit vector in the radial direction.
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What is the potential energy of the electron with the zero of potential energy
for the electron at infinity as usual? HINT: If the result isn’t obvious, you can
get it using the work-potential energy formula:

V = −
∫

~F · d~r + constant .

b) Using the centripetal force law (which is really F = ma for uniform circular
motion)

~F = −mv
2

r
r̂ ,

find an expression for the classical kinetic energy T of the electron in terms of Z,
e, and r alone.

c) What is the total energy of the electron in the orbit?

d) Classically an accelerating charge radiates. This seemed well established
experimentally in Bohr’s time. But an orbiting electron is accelerating, and so
should lose energy continuously until it collapses into the nucleus: this catastrophe
obviously doesn’t happen. Electrons do not collapse into the nucleus. Also they
radiate only at fixed frequencies which means fixed quantum energies by Einstein’s
photoelectric effect theory. So Bohr postulated that the electron could only be
in certain orbits which he called stationary states and that the electron in a
stationary state did not radiate. Only on transitions between stationary states
(sometimes called quantum jumps or leaps) was there an emission of radiation in
a quantum of radiation or (to use an anachronism) a photon. To get the fixed
energies of emission only certain energies were allowed for the stationary states.
But the emitted photons didn’t come out with equally spaced energies: ergo the
orbits couldn’t be equally spaced in energy. From the fact that Planck’s constant
h has units of angular momentum, Bohr hypothesized the orbits were quantized
in equally spaced amounts of angular momentum. But h was not the spacing
that worked. Probably after a bit of fooling around, Bohr found that h/(2π) or,
as we now write it, h− was the spacing that gave the right answer. The allowed
angular momenta were given by

L = nh− ,

where n is any positive non-zero integer. The n is now called the principal
quantum number, but its meanings in the Bohr model and in modern quantum
mechanics are somewhat different. The principal quantum number n determines
the main spacing of the hydrogenic energy levels.

Rewrite kinetic energy T in terms of nh− and solve for an expression for r in
terms n, h−, Ze2, and m only. HINT: Recall the classical expression for angular
momentum of particle in a circular orbit is L = mrv.

e) Using the formula for r from the part (d) answer write an expression for the
energy of a stationary state in terms of m, c, α, Z, and n only. The c is the speed
of light and the α is the fine structure constant: recall that in Gaussian cgs units

α =
e2

h−c
.
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This formula for orbit energy turns out to be correct for the spacing of the main
energy levels. But these energyxhell doesn’t, in fact, have angular momentum
nh−: it consists of has orbitals (as we now call them) with angular momenta in
the range [0, n− 1] in units of h− (e.g., Gr-139).

SUGGESTED ANSWER:

a) Behold:

V = −
∫ ~r

∞

~F · d~r′ = −
∫ r

∞

F (−dr′) =

∫ r

∞

F dr′ =

∫ r

∞

Ze2

r′
dr′ = −Ze

2

r′

∣

∣

∣

∣

r

∞

= −Ze
2

r
,

where we have used the work-potential energy formula.

b) The electrostatic force is the force of the centripetal force law. Thus

−Ze
2

r2
r̂ = −mv

2

r
r̂

which immediately yields

T =
1

2
mv2 =

1

2

Ze2

r
.

c) The total energy is

E = T + V = −1

2

Ze2

r
.

d) Well

T =
1

2
mv2 =

1

2
m

(

L

mr

)2

=
L2

2mr2
=
n2h−2

2mr2
=

1

2

Ze2

r
,

and thus

r =
n2h−2

mZe2
=

h−
mee2

me

m

n2

Z
.

Note the me in the last version of the expression is to allows us to define
the fiducial radius for the hydrogenic atom: i.e., the Bohr radius. The fiducial
radius for a hydrogenic atom is, in fact, the Bohr radius given by

a0 =
h−2

me2
=

h−
mcα

=
λC

2πα
= 0.52917720859(36)× 10−8 cm ≈ 0.529 Å ,

where

α =
e2

h−c
is the fine structure constant in Gaussian cgs units and

λ =
h

mc
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is the Compton wavelength.

e) Behold

E = −1

2

Ze2

r
= −1

2
mc2α2Z

2

n2
.

To go a bit further note

E = −1

2
mc2α2Z

2

n2
= −1

2
mec

2α2 m

me

Z2

n2
= −Eryd

m

me

Z2

n2
≈ −13.606 eV × m

me

Z2

n2
.

where Eryd is the Rydberg energy. I like the Rydberg expresssion

Eryd =
1

2
mec

2α2 ≈ 13.606 eV

since it clearly shows the Eryd is an energy because of the mec
2 factor:

the other factors are dimensionless. So this is the form I’ve committed to
memory. It’s much better than those clusters of obscure constants one often
sees.

Note: The Bohr atom gets the main energy levels correct and their
dependence on n. But, in fact, the main energy levels correspond to n
different angular momentum values.

We should also note that historically Bohr didn’t postulate that angular
momentum quantization, but derived it from other postulates which were
rather crude (PN-195–197). Modern presentations of the Bohr atom prefer
to regard angular momentum quantization as a postulate and avoid those
crude postulates.

Redaction: Jeffery, 2001jan01
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Equation Sheet for Modern Physics

These equation sheets are intended for students writing tests or reviewing material.
Therefore they are neither intended to be complete nor completely explicit. There are
fewer symbols than variables, and so some symbols must be used for different things:
context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret
and use them.

1 Constants

c = 2.99792458 × 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

e = 1.602176487(40)× 10−19 C

ERydberg = 13.60569193(34) eV

ge = 2.0023193043622 (electron g-factor)

h = 6.62606896(33)× 10−34 J s = 4.13566733(10)× 10−15 eV s

hc = 12398.419 eV Å ≈ 104 eV Å

h− = 1.054571628(53)× 10−34 J s = 6.58211899(16)× 10−16 eV s

k = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13) MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23),MeV

α = e2/(4πǫ0h−c) = 7.2973525376(50)× 10−3 = 1/137.035999679(94) ≈ 1/137

λC = h/(mec) = 2.4263102175(33)× 10−12 m = 0.0024263102175(33) Å

µB = 5.7883817555(79)× 10−5 eV/T

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

3 Trigonometry

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ cos2 θ + sin2 θ = 1

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b) cos(a+ b) = cos(a) cos(b) − sin(a) sin(b)



18

cos2 θ =
1

2
[1 + cos(2θ)] sin2 θ =

1

2
[1 − cos(2θ)] sin(2θ) = 2 sin(θ) cos(θ)

cos(a) cos(b) =
1

2
[cos(a− b) + cos(a+ b)] sin(a) sin(b) =

1

2
[cos(a− b) − cos(a+ b)]

sin(a) cos(b) =
1

2
[sin(a− b) + sin(a+ b)]

4 Blackbody Radiation

Bν =
2hν3

c2
1

[ehν/(kT ) − 1]
Bλ =

2hc2

λ5

1

[ehc/(kTλ) − 1]

Bλ dλ = Bν dν νλ = c
dν

dλ
= − c

λ2

E = hν =
hc

λ
p =

h

λ

F = σT 4 σ =
2π5

15

k4

c2h3
= 5.670400(40)× 10−8 W/m2/K4

λmaxT = constant =
hc

kxmax
≈ 1.4387751 × 10−2

xmax

Bλ,Wien =
2hc2

λ5
e−hc/(kTλ) Bλ,Rayleigh−Jeans =

2ckT

λ4

k =
2π

λ
=

2π

c
ν =

ω

c
ki =

π

L
ni standing wave BCs ki =

2π

L
ni periodic BCs

n(k) dk =
k2

π2
dk = π

(

2

c

)

ν2 dν = n(ν) dν
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ln(z!) ≈
(

z +
1

2

)

ln(z) − z +
1

2
ln(2π) +

1

12z
− 1

360z3
+

1

1260z5
− . . .

ln(N !) ≈ N ln(N) −N

ρ(E) dE =
e−E/(kT )

kT
dE P (n) = (1 − e−α)e−nα α =

hν

kT

∂2y

∂x2
=

1

v2

∂2y

∂t2
f(x− vt) f(kx− ωt)

5 Photons

KE = hν − w ∆λ = λscat − λinc = λC(1 − cos θ)

ℓ =
1

nσ
ρ =

e−s/ℓ

ℓ
〈sm〉 = ℓmm!

6 Matter Waves

λ =
h

p
p = h−k ∆x∆p ≥ h−

2
∆E∆t ≥ h−

2

Ψ(x, t) =

∫ ∞

−∞

φ(k)Ψk(x, t) dk φ(k) =

∫ ∞

−∞

Ψ(x, 0)
e−ikx

√
2π

dk

vg =
dω

dk

∣

∣

∣

∣

∣

k0

=
h−k0

m
=
p0

m
= vclas,0

7 Non-Relativistic Quantum Mechanics

H = − h−2

2m

∂2

∂x2
+ V T = − h−2

2m

∂2

∂x2
HΨ = − h−2

2m

∂2Ψ

∂x2
+ VΨ = ih−∂Ψ

∂t
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ρ = Ψ∗Ψ ρ dx = Ψ∗Ψ dx

Aφi = aiφi f(x) =
∑

i

ciφi

∫ b

a

φ∗i φj dx = δij cj =

∫ b

a

φ∗jf(x) dx

[A,B] = AB −BA

Pi = |ci|2 〈A〉 =

∫ ∞

−∞

Ψ∗AΨ dx =
∑

i

|ci|2ai Hψ = Eψ Ψ(x, t) = ψ(x)e−iωt

popφ =
h−
i

∂φ

∂x
= pφ φ =

eikx

√
2π

∂2ψ

∂x2
=

2m

h−2 (V −E)ψ

|Ψ〉 〈Ψ| 〈x|Ψ〉 = Ψ(x) 〈~r|Ψ〉 = Ψ(~r) 〈k|Ψ〉 = Ψ(k) 〈Ψi|Ψj〉 = 〈Ψj |Ψi〉∗

〈φi|Ψ〉 = ci 1op =
∑

i

|φi〉〈φi| |Ψ〉 =
∑

i

|φi〉〈φi|Ψ〉 =
∑

i

ci|φi〉

1op =

∫ ∞

−∞

dx |x〉〈x| 〈Ψi|Ψj〉 =

∫ ∞

−∞

dx 〈Ψi|x〉〈x|Ψj〉 Aij = 〈φi|A|φj〉

Pf(x) = f(−x) P
df(x)

dx
=
df(−x)
d(−x) = −df(−x)

dx
Pfe/o(x) = ±fe/o(x)

P
dfe/o(x)

dx
= ∓dfe/o(x)

dx

8 Spherical Harmonics
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Y0,0 =
1√
4π

Y1,0 =

(

3

4π

)1/2

cos(θ) Y1,±1 = ∓
(

3

8π

)1/2

sin(θ)e±iφ

L2Yℓm = ℓ(ℓ+ 1)h−2
Yℓm LzYℓm = mh−Yℓm |m| ≤ ℓ m = −ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ

0 1 2 3 4 5 6 . . .

s p d f g h i . . .

9 Hydrogenic Atom

ψnℓm = Rnℓ(r)Yℓm(θ, φ) ℓ ≤ n− 1 ℓ = 0, 1, 2, . . . , n− 1

az =
a0

Z

(

me

mreduced

)

a0 =
h−

mecα
=

λC

2πα
mreduced =

m1m2

m1 +m2

R10 = 2a
−3/2
Z e−r/aZ R20 =

1√
2
a
−3/2
Z

(

1 − 1

2

r

aZ

)

e−r/(2aZ)

R21 =
1√
24
a
−3/2
Z

r

aZ
e−r/(2aZ)

Rnℓ = −
{

(

2

naZ

)3
(n− ℓ− 1)!

2n[(n+ ℓ)!]3

}1/2

e−ρ/2ρℓL2ℓ+1
n+ℓ (ρ) ρ =

2r

nrZ

Lq(x) = ex

(

d

dx

)q
(

e−xxq
)

Rodrigues’s formula for the Laguerre polynomials

Lj
q(x) =

(

d

dx

)j

Lq(x) Associated Laguerre polynomials

〈r〉nℓm =
aZ

2

[

3n2 − ℓ(ℓ+ 1)
]



22

Nodes = (n− 1) − ℓ not counting zero or infinity

En = −1

2
mec

2α2Z
2

n2

mreduced

me
= −ERyd

Z2

n2

mreduced

me
≈ −13.606 × Z2

n2

mreduced

me
eV

10 Spin, Magnetic Dipole Moment, Spin-Orbit Interaction

S2
op =

3

4
h−

(

1 0
01

)

s =
1

2
s(s+ 1) =

3

4
S =

√

s(s+ 1)h− =

√
3

2
h−

Sz,op =
h−
2

(

1 0
0 −1

)

ms = ±1

2
χ+ =

(

1
0

)

χ− =

(

0
1

)

µb =
eh−
2me

= 9.27400915(26)× 10−24 J/T = 5.7883817555(79)× 10−5 eV/T

µnuclear =
eh−
2mp

= 5.05078324(13)× 10−27 J/T = 3.1524512326(45)× 10−8 eV/T

~µℓ = −gℓµb

~L

h−
µℓ = gℓµbℓ(ℓ+ 1) µℓ,z = −gℓµb

Lz

h−
µℓ,z = −gℓµbmℓ

~τ = ~µ× ~B PE = −~µ · ~B ~F = ∆(~µ · ~B) Fz =
∑

j

µj
∂Bj

∂z
~ω =

gℓµb

h−
~B

~J = ~L+ ~S J =
√

j(j + 1)h− j = |ℓ− s|, |ℓ− s+ 1|, . . . , ℓ+ s triangle rule

Jz = mj h− mj = −j,−j + 1, . . . , j − 1, j
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E(n, ℓ,±1/2, j) = −ERyd

n2

m

me

[

1 +
α2

n2

(

n

j + 1/2
− 3

4

)]

11 Special Relativity

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns

β =
v

c
γ =

1
√

1 − β2
γ(β << 1) = 1 +

1

2
β2 τ = ct

Galilean Transformations Lorentz Transformations

x′ = x− βτ x′ = γ(x− βτ)
y′ = y y′ = y
z′ = z z′ = z
τ ′ = τ τ ′ = γ(τ − βx)

β′
obj = βobj − β β′

obj =
βobj − β

1 − ββobj

ℓ = ℓproper

√

1 − β2 ∆τproper = ∆τ
√

1 − β2

m = γm0 p = mv = γm0cβ E0 = m0c
2 E = γE0 = γm0c

2 = mc2

E = mc2 E =
√

(pc)2 + (m0c2)2

KE = E − E0 =
√

(pc)2 + (m0c2)2 −m0c
2 = (γ − 1)m0c

2

f = fproper

√

1 − β

1 + β
for source and detector separating

f(β << 1) = fproper

(

1 − β +
1

2
β2

)
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ftrans = fproper

√

1 − β2 ftrans(β << 1) = fproper

(

1 − 1

2
β2

)

τ = βx+ γ−1τ ′ for lines of constant τ ′

τ =
x− γ−1x′

β
for lines of constant x′

x′ =
xintersection

γ
= x′x scale

√

1 − β2

1 + β2
τ ′ =

τintersection

γ
= τ ′τ scale

√

1 − β2

1 + β2

θMink = tan−1(β)


