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Intro Physics Semester I Name:

Homework III: Thermodynamics III: Entropy and 2nd Law One or two full answer questions will be
marked. There will also be a mark for completeness. Homeworks are due usually the day after the chapter
they are for is finished. Solutions will be posted soon thereafter. The solutions are intended to be (but not
necessarily are) super-perfect and often go beyond a fully correct answer.

Answer Table Name:
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021 qmult 00100 1 4 5 easy deducto-memory: heat engine definition
Extra keywords: physci

1. “Let’s play Jeopardy! For $100, the answer is: A device that operates in a cycle. It extracts heat from
a hot reservoir and converts some fraction of this heat into macroscopic work and rejects the rest of the
heat to a cold reservoir. The hot reservoir is at higher temperature than the cold resevoir as the names
suggest.”

What is a , Alex?

a) working fluid b) piston c) cylinder d) refrigerator e) heat engine

SUGGESTED ANSWER: (e)

Wrong answers:

a) A heat engine needs a working fluid.
d) Sort of the opposite of a heat engine or a heat engine in reverse. Either way not the best

answer.

Redaction: Jeffery, 2001jan01

021 qmult 00110 1 1 3 easy memory: working fluid
2. The three main components of a heat engine are a hot reservoir, a cold reservoir, and a .

The is a substance sample (usually a gas at least part of the time during an engine cycle)
that absorbs heat from a hot reservior, rejects heat to a cold and performs the macroscopic work of the
engine. At the end of an engine cycle, the has returned to its original thermodynamic
state.

a) valve b) idling stuff c) working fluid d) engine fluid e) radiator

SUGGESTED ANSWER: (c)

Wrong answers:

d) This term is used for something else.

Redaction: Jeffery, 2008jan01

021 qmult 00120 1 4 2 easy deducto-memory: example heat engine 1
3. An example of a heat engine is a/an:

a) fire. b) internal combustion engine. c) electric motor.
d) common household refrigerator. e) bicycle.

SUGGESTED ANSWER: (b) The good old internal combustion engine (ICE).

Wrong answers:

e) It is an engine, but it converts mechanical energy to mechanical energy, or at another level
human chemical energy to mechanical energy.

Redaction: Jeffery, 2001jan01

021 qmult 00150 1 4 4 easy deducto-memory: refrigerator definition
Extra keywords: physci

4. “Let’s play Jeopardy! For $100, the answer is: A device that operates in a cycle. It extracts heat from
a cold reservoir and rejects the rest of the heat hot reservoir. This process requires an input of work.
The work energy is rejected to the hot reservoir too. The device needs a working fluid that absorbs and
rejects the heat and has work done on it. At the end of a cycle, the working fluid has returned to its
orginal state. The device is a heat engine run in reverse. However, there are very few heat engines that
are designed to run in reverse.”

What is a , Alex?

a) working fluid b) piston c) cylinder d) refrigerator e) heat engine

SUGGESTED ANSWER: (d)

Wrong answers:
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a) A heat engine needs a working fluid.

Redaction: Jeffery, 2001jan01

021 qmult 00160 1 1 2 easy memory: refrigerator gives off more heat
Extra keywords: physci KB-130-20

5. The heat a refrigerator absorbs from its cold bath (or cold reservoir) is:

a) more than the heat is reject to its hot bath. b) less than the heat it rejects to its hot bath.
c) zero. d) infinite. e) the same as it rejects to its hot bath.

SUGGESTED ANSWER: (b)

Wrong answers:

d) As Lurch would say: “Aaaarh.”

Redaction: Jeffery, 2001jan01

021 qmult 00200 1 1 3 easy memory: heat energy refrigerator efficiency
6. The performance of heat engines and refrigerators need to be evaluated in many ways since they are

used in many ways. However, a generally useful performance measure for a heat engine is the efficiency
defined by

ε =
W

QH
=

QH − QC

QH
= 1 − QC

QH
,

where W is the work output, QH is the heat absorbed from the hot bath, and QC is the heat rejected to
the cold bath. Two generally useful performance measures for a refrigerator are the heating and cooling
coefficients of performance:

ηheating =
QH

W
=

QH

QH − QC
=

1

1 − QC/QH
=

1

ε
,

and

ηcooling =
QC

W
=

QH − W

W
=

1

ε
− 1 = ηheating − 1 ,

where W is the work input, QH is the heat rejected to the hot bath, QC is the heat absorbed from the
cold bath, and ε is just a parameter in these equations not an efficiency since they are refrigerators, not
heat engines. Given QC/QH = 1/2, what are the values of ε, ηheating, and ηcooling

a) 1/2, 2, 1/2. b) 2, 1/2, 2. c) 1/2, 2, 1. d) 2, 2, 1. e) 1, 1, 0.

SUGGESTED ANSWER: (c)

Behold:

ε = 1 − QC

QH
= 1 − 1

2
=

1

2
, ηheating =

1

ε
= 2 , ηcooling = ηheating − 1 = 1 .

Wrong answers:

a) Third value is wrong.

Redaction: Jeffery, 2008jan01

021 qmult 00220 1 1 3 easy memory: reversible heat engine highest efficiency
7. The argument that a reversible heat engine—if it exists—is the most efficient heat engine and highest

performance refrigerator (when run in reverse) is as follows. Imagine two identical reversibles: one runs
forward as a heat engine and one runs in reverse as a fridge. For the forward/reverse engine let W be
the work output/input, QH be the heat absorbed from/rejected to the hot bath, and QC be the heat
rejected to/absorbed from the cold bath. We use the work output of the forward engine to drive the
reverse engine. From an outside perspective, nothing happens averaged over an engine cycle. No net
work is done and no net heat leaves or enters the baths.

Now imagine a more efficient heat engine than the reversible and use it to replace the forward
reversible. Scale it to reject QC. Since it is more efficient, it absorbs Q′

H > QH and does work W ′ > W .
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Now the net effect over a cycle is that net work W ′ −W > 0 is done and net heat Q′

H −QH is removed
from the hot bath and there is no net change to the cold bath. Thus, an amount of heat Q′

H − QH is
turned entirely into work with no other effect. This process is just never observed in nature and no one
has ever been able to construct anything like it. It is a reasonable, but not incontrovertible, conclusion
that the more efficient heat engine is impossible and the reversible—if it exists—must be the highest
efficiency engine.

Now imagine a higher performance refrigerator than the reversible and use it to replace the reverse
reversible. Scale it to use work W . Since it is higher performance, it absorbs Q′

C > QC from the cold
bath and rejects heat Q′

H > QH to the hot bath. Now the net effect over a cycle is that net work is
zero and net heat Q′

H −QH = Q′

C > QC is removed from the cold bath and transferred to the hot bath.
This process is just never observed in nature and no one has ever been able to construct anything like
it. Heat does not spontaneously flow from hot to cold. It is a reasonable, but not incontrovertible,
conclusion that the higher performance refrigerator is impossible and the reversible—if it exists—must
be the highest performance refrigerator.

As a matter of fact, the of thermodynamics (which is an axiom of thermodynamics)
dictates the non-existence of the more efficient engine and the higher performance refrigerator, and
therefore leads to the conclusion the reversible—if it exists—must be the most efficient heat engine and
highest performance refrigerator.

a) zeroth law b) 1st law c) 2nd law d) 3rd law e) 4th law

SUGGESTED ANSWER: (c)

Wrong answers:

e) There is no 4th law.

Redaction: Jeffery, 2008jan01
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics
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~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant
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REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2

P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max
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y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v

24 Thermodynamics

dE = dQ − dW = T dS − p dV

TK = TC + 273.15 K TF = 1.8 × TC + 32◦F

Q = mC∆T Q = mL

PV = NkT P =
2

3

N

V
KEavg =

2

3

N

V

(

1

2
mv2

RMS

)

vRMS =

√

3kT

m
= 2735.51 . . .×

√

T/300

A

PV γ = constant 1 < γ ≤ 5

3
vsound =

√

B

ρ
=

√

−V (∂P/∂V )S

m(N/V )
=

√

γkT

m

ε =
W

QH
=

QH − QC

W
= 1 − QC

QH

ηheating =
QH

W
=

QH

QH − QC
=

1

1 − QC/QH
=

1

ε
ηcooling =

QC

W
=

QH − W

W
=

1

ε
− 1 = ηheating − 1

εCarnot = 1 − TC

TH
ηheating,Carnot =

1

1 − TC/TH
ηcooling,Carnot =

TC/TH

1 − TC/TH


