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Intro Physics Semester I Name:

Homework 17: Waves II: Sound One or two full answer questions will be marked. There will also be
a mark for completeness. Homeworks are due usually the day after the chapter they are for is finished.
Solutions will be posted soon thereafter. The solutions are intended to be (but not necessarily are) super-
perfect and often go beyond a fully correct answer.
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018 qfull 00700 1 3 0 easy math: derviving the Doppler effect
1. The Doppler effect is a shift in wave frequency depending on the motion of source and/or observer. It is

common to all wave phenomena, but the actual formulae vary from case to case. A prominent difference
is the one between the sound Doppler effect and the light Doppler effect. Here we derive the formulae
for the sound Doppler effect. We are going to stick to 1-dimensional cases for simplicity.

a) Draw a schematic diagram of transverse wave cycle traveling in the positve x direction with
wavelength λ and phase velocity v′′ (not v′ since we need that symbol for something else below).
The wave cycle takes time P ′ to pass a given x position in the reference frame in which v′′ is
observed. Derive, the formula

f ′λ = v′′ ,

where f ′ is the frequency of the wave.

b) The formula f ′λ = v′′ derived in part (a) is obviously valid for a general frame of reference moving
in the x direction. We will not consider frames moving in other directions. They are not so hard to
deal with, but we want to keep this problem from getting too intricate. We are now in a position
to to see how f ′ is related to f the frequency of the wave in the medium’s frame: i.e., the frame in
which the medium is at rest.

First, note that the phase velocity v of the wave in medium’s frame is the phase velocity that
is derived from the medium properties and is just called the phase velocity without qualifications
unless context says otherwise. The phase velocity in a general frame moving at velocity v′ relative
to the medium is

v′′ = v − v′ .

Second note that the wavelength λ of the wave is the same in all frames. Length is a frame invariant
quantity in classical physics. This is not the case in relativistic physics which is needed for high
relative velocities, but we are not going to consider those cases.

Now derive the basic sound Doppler shift formulae

f ′ = f

(

1 − v′

v

)

, f =
f ′

1 − v′/v
.

c) The frequency f ′ of formula

f ′ = f

(

1 − v′

v

)

can be interpreted as the frequency observed in a frame moving at v′ for a fixed f . Draw a plot
of f ′ versus v′ and explain what is happening in the cases v < 0, v′ = 0, 0 < v′ < v, v = v′, and
v′ > v. Assume f > 0 and v > 0 as usual.

d) The frequency f formula

f =
f ′

1 − v′/v

can be interpreted as the frequency observed in the medium frame for a source moving at v′ with
a fixed source frequency f ′. Draw a plot of f versus v′ and explain what is happening in the cases
v < 0, v′ = 0, 0 < v′ < v, v = v′, and v′ > v. Assume f ′ > 0 and v > 0 as usual.

e) Say a source is moving at velocity v′1 and emitting at fixed frequency f ′

1 and an observer is moving
at velocity v′2. Derive the formula for f ′

2 in terms of v v′1, v′2, and f ′

1.

f) Taylor expand the result of part (e) to 1st order in small v1/v and v2/v, and derive the 1st order
formula for

f ′

2 − f ′

1

f ′

1

.

SUGGESTED ANSWER:

a) You will have to imagine the diagram. Well

P ′ =
λ

v′′
,
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and thus

f ′ =
1

P ′
=

v′′

λ

from which we obtain
f ′λ = v′′ .

b) We have
f ′λ = v′′ , fλ = v

and can divide the first by the second to obtain

f ′

f
=

v′′

v
= 1 − v′

v
.

Immediately, we now have

f ′ = f

(

1 − v′

v

)

, f =
f ′

1 − v′/v
.

c) You will have to imagine the diagram for

f ′ = f

(

1 − v′

v

)

.

There will be a line of negative slope −f/v with x intercept at v′ = v and y intercept of size f .
For v′ < 0, the observer is moving head-on into the waves, and so observes frequency higher

than f . In astrophysics jargon, the waves are blueshifted since visual light in this circumstance
is shifted toward the blue end of the visual spectrum.

For v′ = 0, the observer is at rest in the medium, and so observes frequency f .
For 0 < v′ < v, the observer is moving in the wave propagation direction. The waves

are moving faster than the observer, and so he/she sees them passing him/her, but at a
frequency lower than f . In astrophysics jargon, the waves are redshifted since visual light in
this circumstance is shifted toward the blue end of the visual spectrum.

For v′ = v, the observer is moving at the wave velocity, and observes the waves at rest.
So the frequency f ′ = 0. The observer is moving at the sound speed.

For v′ > v, the observer is supersonic and is passing the waves. The way we have set
up the conventions this means he/she is observing a negative frequency. We don’t usually
think of frequency as being negative, but the conventions lead to that situation here—and the
interpretation we’ve given.

d) You will have to imagine the diagram for

f =
f ′

1 − v′/v
.

The derivative of the function is

df

v′
=

f/v

(1 − v′/v)2
≥ 0 .

So the function rises monotonically with v′ with the only stationary points being a minimum at
v′ = −∞ and a maximum at v′ = ∞. The function has a singularity at v′ = v. (A singularity
is a point where a function does not formally exist, but in our sloppy physics way, we are often
able to say it has infinite or negative infinite value at the singularity.) Below the singularity, the
function rises asymptotically to infinity. Above singularity, the function rises asymptotically
from negative infinity.

For v′ < 0, the source is moving away the observer and the frequency is reduced below f ′.
It takes longer between wave cycles than if the source were at rest, because the source moves
farther away between each crest emission. If the source is moving at v′ = −∞, the observed
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frequency f = 0 since no wave cycles ever get to the observer—there emission point is infinitely
far away. In astrophysics jargon, the source is redshifted.

For v′ = 0, the source is at rest in the medium, and the observer observes source frequency
f ′.

For 0 < v′ < v, the source is moving toward the observer. The frequency f is greater than
f ′ since between emitting cycles, the source has moved closer to the observer. In astrophysics
jargon, the source blueshifted.

For v′ = v, the source is moving just at the wave velocity. All emitted wave cycles are in
the same place, the current location of the source. The net wave pulse is a sonic boom.

For v′ > v, the the source is moving faster than the wave cycles and leaving them trailing
it. The observer fequency f < 0, but this is just because the wave cycles are being observed
by the observer in the reverse order from the emission. He/she observes the later emitted ones
before the earlier emitted ones. The v′ = ∞ case can be interpreted as the cycles never being
able to reach observer since they were all emitted when the source was infinitely far away. One
moment the source is at negative infinity, the next at positive infinity. The cycles can’t reach
us from either place.

e) Well

f =
f ′

1

1 − v′1/v
, f =

f ′

2

1 − v′2/v
,

and so

f ′

2 = f ′

1

(

1 − v′2/v

1 − v′1/v

)

.

To go off on a tangent, we can define the relative velocity between observer and source as

∆v = v′2 − v′1 .

Now we ask does f ′

2 always redshift/blueshift with increasing/decreasing ∆v. We take the
derivative with respect to ∆v (using partial differentiation and the chain rule) to get

df ′

2

d∆v
=

df ′

2

dv′2

dv′2
d∆v

=
df ′

2

dv′1

dv′1
d∆v

= −f ′

1

v

1

(1 − v′1/v)
− f ′

1

v

(1 − v′2/v)

(1 − v′1/v)2
.

So as long as as all motions are subsonic, the answer is yes. If there are supersonic motions,
the answer is trickier.

f) If v′1/v << 1 and v′2/v << 1, then we can Taylor expand the part (e) formula to 1st order in
small v′1/v and v′2/v. We obtain the 1st order formulae

f ′

2 = f ′

1

[

1 − (v′2 − v′1)

v

]

and
f ′

2 − f ′

1

f ′

1

= − (v′2 − v′1)

v
.

The last formula can be written in the simplified mnemonic form

∆f

f
= − ∆v

vsound

as long as we remember to interpret the symbols correctly. This formula clearly shows that
there is always a redshift/blueshift with increasing/decreasing ∆v.

Redaction: Jeffery, 2008jan01
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics
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~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant



12

REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2

P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max
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y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v


