Intro Physics Semester I Name:

Homework 17: Waves II: Sound One or two full answer questions will be marked. There will also be
a mark for completeness. Homeworks are due usually the day after the chapter they are for is finished.
Solutions will be posted soon thereafter. The solutions are intended to be (but not necessarily are) super-
perfect and often go beyond a fully correct answer.

Answer Table Name:

a b C d e a b C d e

1. O O O O O 31. O O O O O
2. O O O O O 32. O O O O O
3. O O O O O 33. O 0] O 0] O
4. O O O O O 34. O 0] O 0] O
5. O O (0] O (0] 35. O (0] O O O
6. O O O O O 36. O 0] O O O
7. O O O O O 37. O 0] O O O
8. O O O O O 38. O O O O O
9. O O O O O 39. O O O O O
10. O O O O O 40. O 0] O 0] 0]
11. O O O O O 41. O 0] O 0] 0]
12. O O O O (0] 42. O O O (0] O
13. O O O O (0] 43. O O O (0] O
14. O O O O O 44. O 0] O O 0]
15 O O O O (0] 45. O (0] O O O
16. O O O O (0] 46. O (0] O O O
17. O O O O O 47. O 0] O 0] O
18. O O O O O 48. O 0] O 0] O
19. O O O O (0] 49. O (0] O O O
20. O O O O (0] 50. O (0] O O O
21. O O O O O 51. O 0] O O O
22. O O O O O 52. O 0] O O O
23. O O O O (0] 53. O (0] O O O
24. O O O O O 54. O 0] O 0] 0]
25. O O O O O 55. O 0] O 0] 0]
26. O O O O (0] 56. O (0] O O O
27. O O O O (0] 57. O (0] O O O
28. O O O O O 58. O 0] O 0] 0]
29. O O O O O 59. O 0] O 0] 0]
30. O O O O (0] 60. O (0] O O O



018 gfull 00700 1 3 0 easy math: derviving the Doppler effect
1. The Doppler effect is a shift in wave frequency depending on the motion of source and/or observer. It is
common to all wave phenomena, but the actual formulae vary from case to case. A prominent difference
is the one between the sound Doppler effect and the light Doppler effect. Here we derive the formulae
for the sound Doppler effect. We are going to stick to 1-dimensional cases for simplicity.

a)

Draw a schematic diagram of transverse wave cycle traveling in the positve z direction with
wavelength A and phase velocity v” (not v’ since we need that symbol for something else below).
The wave cycle takes time P’ to pass a given x position in the reference frame in which v” is
observed. Derive, the formula

fIA — U/I ,

where f’ is the frequency of the wave.

The formula f'A = v” derived in part (a) is obviously valid for a general frame of reference moving
in the x direction. We will not consider frames moving in other directions. They are not so hard to
deal with, but we want to keep this problem from getting too intricate. We are now in a position
to to see how [’ is related to f the frequency of the wave in the medium’s frame: i.e., the frame in
which the medium is at rest.

First, note that the phase velocity v of the wave in medium’s frame is the phase velocity that
is derived from the medium properties and is just called the phase velocity without qualifications
unless context says otherwise. The phase velocity in a general frame moving at velocity v’ relative
to the medium is

v =v—1".
Second note that the wavelength \ of the wave is the same in all frames. Length is a frame invariant
quantity in classical physics. This is not the case in relativistic physics which is needed for high
relative velocities, but we are not going to consider those cases.

Now derive the basic sound Doppler shift formulae

r_ v’ _
f_f<1_;)’ f_l—v’/v'

i)
v

can be interpreted as the frequency observed in a frame moving at v’ for a fixed f. Draw a plot
of f’ versus v’ and explain what is happening in the cases v < 0, v =0, 0 < v <wv, v = ', and
v’ >wv. Assume f > 0 and v > 0 as usual.

The frequency f’ of formula

The frequency f formula
f/

- 1—v'/v

f

can be interpreted as the frequency observed in the medium frame for a source moving at v’ with
a fixed source frequency f’. Draw a plot of f versus v’ and explain what is happening in the cases
v<0,v=0,0<v <wv,v=1", and v > v. Assume f' > 0 and v > 0 as usual.

Say a source is moving at velocity v{ and emitting at fixed frequency f; and an observer is moving
at velocity v4. Derive the formula for f} in terms of v v}, v, and f].

Taylor expand the result of part (e) to 1st order in small v; /v and vs /v, and derive the 1st order
formula for , ,
fo—h

f

SUGGESTED ANSWER:

a)

You will have to imagine the diagram. Well



d)

and thus

from which we obtain

fIa=v".

We have
fa=1", fA=w

and can divide the first by the second to obtain

Immediately, we now have

v

,U/ f/
rer(i-2) . =L
You will have to imagine the diagram for

rea-2)

There will be a line of negative slope — f /v with « intercept at v = v and y intercept of size f.

For v/ < 0, the observer is moving head-on into the waves, and so observes frequency higher
than f. In astrophysics jargon, the waves are blueshifted since visual light in this circumstance
is shifted toward the blue end of the visual spectrum.

For v' = 0, the observer is at rest in the medium, and so observes frequency f.

For 0 < v/ < v, the observer is moving in the wave propagation direction. The waves
are moving faster than the observer, and so he/she sees them passing him/her, but at a
frequency lower than f. In astrophysics jargon, the waves are redshifted since visual light in
this circumstance is shifted toward the blue end of the visual spectrum.

For v/ = v, the observer is moving at the wave velocity, and observes the waves at rest.
So the frequency f/ = 0. The observer is moving at the sound speed.

For v/ > v, the observer is supersonic and is passing the waves. The way we have set
up the conventions this means he/she is observing a negative frequency. We don’t usually
think of frequency as being negative, but the conventions lead to that situation here—and the
interpretation we’ve given.

You will have to imagine the diagram for

__[f
F= 1—v'jv’
The derivative of the function is
df f/v

—=—"—->0.
o (1—=v"/v)? ~ 0

So the function rises monotonically with v" with the only stationary points being a minimum at
v’ = —o0o and a maximum at v’ = co. The function has a singularity at v’ = v. (A singularity
is a point where a function does not formally exist, but in our sloppy physics way, we are often
able to say it has infinite or negative infinite value at the singularity.) Below the singularity, the
function rises asymptotically to infinity. Above singularity, the function rises asymptotically
from negative infinity.

For v’ < 0, the source is moving away the observer and the frequency is reduced below f”.
It takes longer between wave cycles than if the source were at rest, because the source moves
farther away between each crest emission. If the source is moving at v = —o0, the observed



frequency f = 0 since no wave cycles ever get to the observer—there emission point is infinitely
far away. In astrophysics jargon, the source is redshifted.

For v = 0, the source is at rest in the medium, and the observer observes source frequency
[

For 0 < v' < v, the source is moving toward the observer. The frequency f is greater than
f' since between emitting cycles, the source has moved closer to the observer. In astrophysics
jargon, the source blueshifted.

For v' = v, the source is moving just at the wave velocity. All emitted wave cycles are in
the same place, the current location of the source. The net wave pulse is a sonic boom.

For v’ > v, the the source is moving faster than the wave cycles and leaving them trailing
it. The observer fequency f < 0, but this is just because the wave cycles are being observed
by the observer in the reverse order from the emission. He/she observes the later emitted ones
before the earlier emitted ones. The v’ = co case can be interpreted as the cycles never being
able to reach observer since they were all emitted when the source was infinitely far away. One
moment the source is at negative infinity, the next at positive infinity. The cycles can’t reach
us from either place.

e) Well
!/ !/
o 1 — f2
f_l—v’l/v’ / 1—vh/v’
and so oy
—vh/v
f/_f/< 2 ) .
20\ =l v

To go off on a tangent, we can define the relative velocity between observer and source as
o /
Av =vy —v] .

Now we ask does f} always redshift/blueshift with increasing/decreasing Av. We take the
derivative with respect to Av (using partial differentiation and the chain rule) to get

dfy _dfg dvy _dfs dvy i 1 fi (L-vp/v)
dAv — dvydAv  dv,dAv v (1= /v) v (1=} v)2

So as long as as all motions are subsonic, the answer is yes. If there are supersonic motions,
the answer is trickier.

f) If vi /v << 1 and v5/v << 1, then we can Taylor expand the part (e) formula to 1st order in
small v /v and v5/v. We obtain the 1st order formulae

P

and

f-fi__h-u)

A v

The last formula can be written in the simplified mnemonic form

Af_ A

f Usound

as long as we remember to interpret the symbols correctly. This formula clearly shows that
there is always a redshift/blueshift with increasing/decreasing Aw.

Redaction: Jeffery, 2008jan01



Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

¢ =2.99792458 x 10%m/s ~ 2.998 x 10°m/s ~ 3 x 103 m/s ~ 1lyr/yr ~ 1ft/ns  exact by definition
e = 1.602176487(40) x 107 C

G = 6.67384(80) x 107" Nm?/kg® (2012, CODATA)

g =98m/s’ fiducial value

1
k= T = 8987551787 x 10° ~ 8.99 x 10° =~ 10'® Nm?/C?exact by definition

TED
EBoltzmann = 1.3806504(24) x 10723 J/K = 0.8617343(15) x 107 *eV/K ~ 107*eV /K
me = 9.10938215(45) x 1073 kg = 0.510998910(13) MeV
m, = 1.672621637(83) x 10~%" kg = 938.272013(23), MeV

1
€0 = v = 8.8541878176...x 1072 C?/(Nm?) ~ 10~ vacuum permittivity (exact by definition)

o = 41 x 1077 N/A? exact by definition

2 Geometrical Formulae

4
Ceir = 271 Agiy = 712 Agph = dgr? Viph = gﬂ'r?’

Qgphere = 47 dQ = sinfdf do

3 Trigonometry Formulae

in 0
— =cosf = =sginf —=tan9:sm cos?f +sin?0 =1
cosf
1 1
cscl = — secl = cotf =
sin cosf tan @

ind, in 6 inf,
¢ =a®+ b ¢ =+/a? + b2 — 2abcos, S :SH;) b_ S
a c

f(8) = f(0+360°)

sin(f 4+ 180°) = —sin(6) cos(f + 180°) = — cos(6) tan(f + 180°) = tan(6)

sin(—0) = —sin(6) cos(—0) = cos(0) tan(—0) = — tan(6)



sin(6 4 90°) = cos(h) cos(f 4+ 90°) = —sin(6) tan(f + 90°) = — tan(d)
sin(180° — 6) = sin(h) cos(180° — ) = — cos(6) tan(180° — #) = — tan(h)

sin(90° — ) = cos(h) cos(90° — ) = sin(h) tan(90° — ) = tai(@) = cot(6)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b)  cos(a + b) = cos(a) cos(b) — sin(a) sin(b)
sin(2a) = 2sin(a) cos(a) cos(2a) = cos*(a) — sin?(a)
sin(a) sin(b) = % [cos(a — b) — cos(a + b)) cos(a) cos(b) = % [cos(a — b) + cos(a + b)]
sin(a) cos(b) = % [sin(a — b) + sin(a + b)]

sin? @ = %[1 — cos(26)] cos? @ = —[1 + cos(26)] sin(a) cos(a) = % sin(2a)

N =

cos(z) — cos(y) = —2sin (%ﬂ) . (:v - y)

cos(x) + cos(y) = 2 cos (
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sin(z) + sin(y) = 2sin (
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4 Approximation Formulae

Af df 1 .

1
sinf ~ 0 tanf ~ 0 cosﬁzl—ié’z all for § <<'1

5 Quadratic Formula

_ b=V —dac b <b>2 c

If 0=az?+bx+c, then x -
2a 2a



6 Vector Formulae

a=ldl = /a2 +aZ 9:tan_1(2—y>+w? @+ b= (ag + bs,ay +by)
a=1d = /a2 + a2 + a? ¢ = tan™* ) a2 0 = cos™* (a_z)
* v z Qg a

@+ b= (ag + by, ay + by, a. +b.)

@-b=abcosf = azby + ayby + a.b,

C=axb= absin(0)é = (ayb, — byas, a by — byay, azby, — byay)

7 Differentiation and Integration Formulae

d(zP)
dx

d(z®) 1
dx dx T

=paP~!  except for p = 0;

Taylor’s series flx) = i (x_nﬂf(n) (zo)

n=0

_ () (@ —w0)? 15) @ —x0)* 13)
f(xo) + (x — x0) fH (w0) + o1 ¥ (o) + 3 [ (o) + ...

b
/ f@)de = F@)[? = F(b) — F(a) where T2 _ f(p)

zntl 1
/x" dx = except for n = —1; /— dx = In ||
n+1 T

8 One-Dimensional Kinematics

_Ar e Ao de
Vave = Ay T ave = Ay T T A

1
v = at + vy x:iatz—i-vot—i—xo v? = 3 + 2a(x — x0)

1 1
x:i(vo—i—v)t—i—xo x:—iatz—i—vt—l-xo g =9.8m/s?



Trel = T2 — X1 Urel = V2 — V1 Gre]l = G2 — A1

/! !
T = T — Uframel U =V — Vframe a =a

9 Two- and Three-Dimensional Kinematics: General

A7 dar S AT dv  d*F

17: = — 17: Qa. = — - =
e AL dt "ETTAL dt ~ di2

ST
|
|

10 Projectile Motion

1
T = Vg ot y = —§gt2 + vy.0t + Yo Vg0 = Vg cos B Vy,0 = vosinf

t I x + ztanb z%g
vyo  vpcosd y=H 203 cos? 0
vg sin 6 cos 0 vg sin” @
Tfor y max — — Ymax = Yo + ——
g 29
202sinfcosf  v2sin(20 T V2
:v(y = yO) = 0 =2 ( ) Ofor max = — xmax(y = yO) =2
g g 4 g
2(yo — 2(yo —
g g
11 Relative Motion
F'=7Ty —1T] U =17y — U1 a=dy —d
12 Polar Coordinate Motion and Uniform Circular Motion
do dow  d?0
w = — o= — = —
dt dt dt?
. R L dar drA_i_ p . A d>r AP +2dr p
7= T=—=—7F+r1w d=—=|—=—10° |7 ro —w
dt dt dt? dt? dt
7= rwb V= Tw Atan = T
. v? A 02
Gcentripetal = ——— T = —rw?f 2

Gcentripetal = 7 =TrTw = 9w



13 Very Basic Newtonian Physics

. S S o
- Zi m;T; Zsub MsubTcm sub - Zi m;iv; - Zz mia;
cm — = Vem = — Qe = —
Mtotal Mtotal Mtotal Mtotal
L fv p(F)FdV
Tem =
Mtotal
FLet = ma Fo1 = —Fi» Fy=mg g =9.8m/s*

Fnormal = _Fapplicd Eincar = —kx

— T="Ty — Fparallel(s) T=To

fnormal =

E' static — min(Fapplicda E static max) Ff static max — ,LLstatiCFN E kinetic — ,UJkincticFN

do dw  d%0
Utangential = TW = TE Qtangential = TQX = TE = ’I’ﬁ

o v? - v?
Qcentripetal = — T Feentripetal = —m77’

mg vT m —

Firag 1in = bv UT:T T:?:? v=wvr(l—e /T)
F. — b? = 2 CpA? S
drag,quad = 0V = 5 pAv v = b

14 Energy and Work

ﬂ _ 1
AW = F - ds W:/F-d§ KE=g5mv?  Emechanical = KE + PE

AW dw ~
Pav - = — P=F.7
& At dt v

= _Wby a conservative force AE = Wnonconservative

AKE = Wnet A‘P-Eof a conservative force

dPE . 1
F=-— y F=-VPE PE=§/~m2 PE = mgy
T

15 Momentum



—

Fnet = MAcm A‘K'Ecm = VVnet,external A-Ecm =

not

" " = dp = dPotal
p=mv Fnct:_ Fnct: o

dt dt
- = . L odm = L dm
Macm = Fret non-flux + (Uﬂux - ’Ucm)ﬁ = Fret non-flux + Urel%
m
V= Vg + Vex I (—0) rocket in free space
m

10

16 Collisions

L. . . . P1 + P2
P1i + P2i = D1f + D2y Uem = ———

Mtotal

KFEiotal f = KFEiotal i 1-d Elastic Collision Expression

(m1 — mg)’Ul + 2movs

vy = 1-d Elastic Collision Expression
mi + meo
vor — vy = —(vg — v1) Urel’ = —Urel 1-d Elastic Collision Expressions
17 Rotational Kinematics
1
21 = 6.2831853. .. or = 0.15915494 . ..
T
180° T 1
=57.2 ...~ 60° —— =0.017453292 ... ~
57.295779 60 130° 0.01745329 50°
s de v d?0 dw a w 1
9 = — = — = — = — = — = — = — P = — =
T YTa Ty CTaE T a Tr / 2m f

1
w = at + wy Af = §at2+w0t w? =w§+2aA9

1 1
Al = E(wo—i-w)t Al = —§o¢t2+wt

18 Rotational Dynamics
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Tz,net = Ia

L, = RP,,sinp, T, = REyy siny, L,=1w
I = Z mzR? 1= /RQP av Iparallcl axis — Icm + ngm Iz = Ix + Iy

1 1
eyl shell thin = M R? Iy = §MR2 Iyl shell, thick = iM(Rf + R2)

2MR2

1 2
Irod,thin,cm = EMLz Isph,solid = gMR2 Isph,shell,thin = 3

. gsinf
1+ 1I/(mr?)

1
KErot:§IW2 dW =1, df P:W:Tzw

A*Kv-Elrot = Wnet = /Tz,net do AP-Elrot =-W= _/Tz,con do

AElrot = KErot + A‘P-Elrot = Wnon,rot AE =AKFE + KErot +APE = Wnon + Wrot

19 Static Equilibrium

= — — / .
cht,nct =0 Text,net = 0 Text,net = Text,net if cht,nct =0

O:Fnetx:ZFx O:Fnety:ZFy O:Tnet:ZT

20 Gravity
. G GM e
Filona = — m21m2f-12 J=- 5T fg-dA:—zleM
12 r
M [12GM [GM
PE = — Gmims V= —G— Vescape = ¢ Vorbit = G—
r12 r r "

472 2 dA 1 L
P2 = & 73 P = T r3/2 — = —y%20w = — = Constant
dt 2 2m



REarth,mean = 6371.0km REarth,equatorial = 6378.1km Mgarth = 5.9736 x 1024 kg

REarth mean orbital radius = 1.495978875 x 10" m = 1.0000001124 AU ~ 1.5 x 10" m ~ 1 AU

RSun,cquatorial = 6.955 x 108 ~ 109 x REarth,cquatorial MSun = 1.9891 x 1030 kg

12

21 Fluids

F
r=Ay P=7 P = po + pgddepth

Pascal’s principle p = pext — pg(y — Yext) Ap = Apeyt
Archimedes principle  Fiuoy = Mfuid disg = Viuid disPAuidg

equation of continuity for ideal fluid Ry = Av = Constant

1
Bernoulli’s equation p+ 3 pv* + pgy = Constant
22 Oscillation
-1 L o k 2
P=f w=2rf F=—kx PE = 5/@:5 a(t) = ——x(t) = —wx(t)
m
k m .
w=4/— P=2m/— x(t) = Acos(wt) + Bsin(wt)
m k
1 1 1 1
Finec total = Emvfnax = ikxfnax = imv2 + Ekxz
1
P =2 |— P_27r\/Z
mgr g
23 Waves
d?y 1 d?y Fr
s mae T\ y=feFe

Y = Ymax SIN[E(T F vt)] = Ymax sin(kz F wt)

1 9
Period = k:% v:fA:% P o 320



Y = 2Ymax sin(kx) cos(wt) n=— L=nz A= — f=n—

v= (‘Z—IDS nA = dsin(0) (n+ %) A = dsin(6)

P I
I= 47r? §=(10dB) x log (E>
f:ni : n:173,5,... fmediul’n: fO

1- UO/Umcdium

, v’ _
r=i(-5) -
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