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Intro Physics Semester I Name:

Homework 16: Waves I: One or two full answer questions will be marked. There will also be a mark for
completeness. Homeworks are due usually the day after the chapter they are for is finished. Solutions will
be posted soon thereafter. The solutions are intended to be (but not necessarily are) super-perfect and often
go beyond a fully correct answer.
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1. “Let’s play Jeopardy! For $100, the answer is: It is a extended-in-space location varying oscillation of
something. Transport of energy and momentum can occur, but not in all cases.”

What is , Alex?

a) mass b) energy c) pressure d) temperature e) a wave phenomenon

2. In one method of physically classifying waves, one has:

a) mechanical, electromagnetic, and quantum mechanical waves.
b) left, right, and middle waves.
c) S, P, and Middle Earth waves.
d) American waves, British waves, and Australian wives.
e) mechanical, financial, and emotional waves.

3. In another method of physically classifying waves, one has waves:

a) trapeze and leotard b) terrific and lewd c) tornado and lounge
d) toasty and lemony e) transverse and longitudinal

4. “Let’s play Jeopardy! For $100, the answer is:

∂2y

∂x2
=

1

v2

∂2y

∂t2
,

where the symbol ∂ indicates partial derivatives (i.e., ∂y/∂x is the derivative of y with respect to x
holding t constant) y is the displacement of some wave quantity, x is a spatial dimensional, t is time,
and v is a phase velocity. This equation and multi-dimensional generalization of it hold for many wave
phenomena such as small waves on a string and electromagnetic waves. However, not all waves obey
it.”

What is the , Alex?

a) medium b) phase velocity equation c) partial equation d) phase equation
e) wave equation

5. What does the linearity of the wave equation (differential wave equation) imply?

a) A linear combination of solutions is the square of a solution.
b) A linear combination of solutions is the inverse of a solution.
c) That there are no solutions.
d) A linear combination of solutions is a solution.
e) That there is only one solution.

6. The principle for the wave equation—which is not the only wave equation despite its
unqualified name—is not new axiom. It is is just a consequence of the linearity of the wave equation
which implies that the linear combination of any two solutions is a solution. The principle
applies in many context which is perhaps why it is gloried with the term “principle” even though it may
not be an axiom in any of them as far as yours truly knows.

a) wave b) wavelength c) symmetrization d) superposition e) werewolf

7. A very general, but not completely general, solution of the wave equation

∂2y

∂x2
=

1

v2

∂2y

∂t2

is f(x − vt). The proof for this solution is as follows. Let φ = x − vt. Now

LHS =
∂2f

∂φ2
× 12 =

∂2f

∂φ2
, RHS =

1

v2

∂2f

∂φ2
× v2 =

∂2f

∂φ2
= LHS ,

and that is QED. We have made use of the:

a) quotient rule. b) product rule. c) chain rule. d) you-may-never-break-the-chain rule.
e) right-hand rule.
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8. A very general, but not completely general, solution of the wave equation

∂2y

∂x2
=

1

v2

∂2y

∂t2

is f(x − vt). The solution is a traveling wave solution. The proof for this solution is as follows. Let
φ = x − vt. For a constant φ, one has a constant oscilation deviation f(φ). But this deviation’s x
position moves as with velocity . Since φ is called the phase of the wave
solution, v is called the phase velocity. A wave solution of the form f(x − vt) is just a pattern that is
traveling to the right for v > 0 and to the left for v < 0. If v2 = 0, the wave equation is not defined and
there is no solution. But there can be solutions that do not travel.

a) φ − vt; −v. b) φ + vt; −v. c) φ − vt; v. d) φ + vt; v. e) v; φ − vt.

9. A non-traveling wave solution to the wave equation

∂2y

∂x2
=

1

v2

∂2y

∂t2

is
y = A cos(kx + φx) cos(ωt + φt) ,

where A is amplitude, k is wavenumber t is angular frequency, and φx and φt are general phase constants.
We require that v = ω/k. Either or both of the cosine functions can be changed to sine functions by
defining different phase constants: e.g., φx = φ′

x − π/2 which gives cos(kx + φx) = sin(kx + φ′

x). The
proof for this solution is as follows: Now

LHS =
∂2y

∂x2
= −k2y , RHS =

1

v2

∂2y

∂x2
= −ω2

v2
y = −k2y = LHS ,

and that is QED. The solution does not travel. No shape simply glides to the right or left. At each point
x, the solution is just simple harmonic motion with angular frequency ω and amplitude A cos(kx + φx).
Solutions of this kind are called:

a) standing waves. b) traveling waves. c) sitting waves. d) immobilized waves.
e) v; φ − vt.

10. “Let’s play Jeopardy! For $100, the answer is: Energy.”

What , Alex?

a) is vis viva b) is angular momentum c) is momentum d) is a vector
e) do waves transport

11. The DISTANCE along a wave pattern in its propagation direction before the shape begins to repeat
is called the and the time period before the wave pattern begins to repeat itself at any
point in space is called the .

a) frequency f ; epoch e b) amplitude A; duration d c) wavelength λ; period P
d) period P ; aeon a e) phase velocity v; awhile a

12. Say N cyles (i.e., wavelengths) of a periodic wave have passed a given point. This took time NP . The
number of cycles per unit time or frequency f is given by:

a) f = P/N . b) f = 1/(NP ). c) f = N/P . d) f = P e) f = 1/P .

13. The time for wave cycle of wavelength λ to pass a given point is period P . The phase speed of the
wave phenomena is then from which one obtains the very familiar frequency-wavelength
formula .

a) v = λP ; f = λ/v b) v = λ/P ; fλ = v c) v = λ/P ; λ = vf d) v = λ/P ; v2 = fλ
e) v = λP ; λ2 = vf

14. waves in one dimesion are given by

y = A cos(kx − ωt + φ) or y = B cos(kx − ωt) + C sin(kx − ωt) ,
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where A is amplitude, k is wavenumber, x is positio, ω is angular frequency, t is time, and B are C are
constants obtained by expanding cos(kx−ωt + φ) into cosine and sine terms. waves turn
up in many contexts and, in fact, all waves can be expanded into linear combinations of them using
Fourier series or Fourier transforms which gives these waves a universal use.

a) Sinusoidal b) Cosinusoidal c) Trigonometric d) Tangential e) Cotangential

15. A sinusoid repeat every time its argument increases by 2π. Thus, sinusoidal waves repeat as spatial
coordinate alone varies when k∆x = 2π and as time coordinate varies alone when ω∆t = 2π Immediately,
one sees that:

a) k = λ and f = ω. b) k = πλ and f = πω. c) k = 2πλ and f = 2πω.
d) k = 2π/λ and f = ω/(2π). e) k = f and f = λ.

16. A sinusoidal wave is an example of a/an:

a) aperiodic wave. b) periodic wave. c) transverse wave. d) longitudinal wave.
e) trapeze wave.

17. Sinusoidal waves, given by

y = A cos(kx − ωt + φ) or y = B cos(kx − ωt) + C sin(kx − ωt) ,

satisfy the wave equation
∂2y

∂x2
=

1

v2

∂2y

∂t2
.

This can be prove by direct subsitution into wave equation or by recognizing the sinusoidal wave function
is of the form of the general traveling wave solution of the wave equation: i.e., f(x − vt). Either way
we find the relationship between phase velocity v and k and ω to be:

a) v = ωk2 = fλ. b) v = ωk = fλ. c) v = ω/k = fλ. d) v = k/ω = fλ.
e) v = ω/k2 = fλ.

18. Consider a string running along the x axis with tension τ . We can derive equation of motion for small
transverse waves on the string. The waves are small continuously varying displacements of the string in
the transverse y direction. Consider a differential segment of the string that in the x direction extends
length dx. Newton 2nd law applied to this segment of string gives

(µ dx)
d2y

dt2
= (τ sin θ)2 − (τ sin θ)1 ,

where µ is the linear mass density, θ is the angle of the string from the vertical, (τ sin θ)2 is the vertical
force at the right end of the segment, and (τ sin θ)1 is the vertical force at the left end of the segment.
Since we are considering small waves, we can make the small-angle approximation and obtain

sin θ ≈ tan θ =
dy

dx
.

We now assume that the tension τ can be approximated as constant despite the stretching of the string
by the waves. This approximation is difficult to justify a priori, but the resulting equation of motion
works very well in many cases and that gives a posteriori justification. Now we have

(µ dx)
d2y

dt2
= τ d(tan θ) = τ d

(

dy

dx

)

,

and thus
d2y

dt2
=

τ

µ

dy2

dx2
,

is our equation of motion. Note the µ is constant if all the matter displacements are transverse. If they
are not, we assume that µ can be approximated as constants. We recognize our equation of motion as the
1-dimensional wave equation with phase velocity . From this recognition, all the formalism
developed for the wave equation applies for waves on a string in the small-wave approximation. What
if the waves are not small? Then the wave equation—which is not the only wave equation despite its
unqualified name–does not apply and a more complex analysis of the string waves is needed.
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a) v =
τ

µ
b) v =

√

τ

µ
c) v =

µ

τ
d) v =

√

µ

τ
e) v =

√
µτ

19. A string is 8 m long and has mass 0.02 kg. What is its linear density µ?

a) 400 kg/m. b) 250 kg/m. c) 400 m/kg. d) 2.5 × 10−5 kg/m. e) 2.5 × 10−3 kg/m.

20. The wave speed for a string is

v =

√

FT

µ
,

where FT is the string tension and µ is the linear density (i.e., mass per unit length). What is wavelength
as a function of FT?

a) λ = f
√

FTµ. b) λ = f
√

FT/µ. c) λ = f−1
√

FTµ. d) λ = f−1
√

FT/µ.
e) λ = fFTµ.

21. What is an antinode?

a) A point of no motion in standing waves.
b) A point of minimum amplitude in standing waves.
c) A point of maximum amplitude in standing waves.
d) That which proceeds a node.
e) That which follows a node.

22. You have a string of length L with fixed endpoints. There are standing waves on the string. You count
n antinodes. What is the wavelength of the waves?

a) λ = Ln. b) λ = L/n. c) λ = L2/n. d) λ = L. e) λ = 2L/n.

23. In the 3rd harmonic of standing waves on a string fixed at both ends, how many antinodes are there:

a) Six: 2 for each of the 3 full wavelengths making up the pattern.
b) Four: the endpoints and the 2 inner points of no motion.
c) Three.
d) Two like the Bactrian camel.
e) One like the Arabian camel.

24. The equation of a transverse wave on a string is

y(t) = 9.0 sin(0.01πx + 4.0πt) ,

where x and y are in centimeters, t is in seconds, and the argument of the sine is in radians. Find the
(a) amplitude A, (b) wavelength λ, (c) frequency f , (d) phase speed vph, (e) direction of propagation, and
(f) maximum transverse speed of the string. Also (g) what is the transverse displacement at x = 3.5 cm
and time t = 0.26 s?
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics
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~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant
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REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2

P = 2π

√

I

mgr
P = 2π

√

r

g

23 Waves

d2y

dx2
=

1

v2

d2y

dt2
v =

√

FT

µ
y = f(x ∓ vt)

y = ymax sin[k(x ∓ vt)] = ymax sin(kx ∓ ωt)

Period =
1

f
k =

2π

λ
v = fλ =

ω

k
P ∝ y2

max
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y = 2ymax sin(kx) cos(ωt) n =
L

λ/2
L = n

λ

2
λ =

2L

n
f = n

v

2L

v =

√

(

∂P

∂ρ

)

S

nλ = d sin(θ)

(

n +
1

2

)

λ = d sin(θ)

I =
P

4πr2
β = (10 dB) × log

(

I

I0

)

f = n
v

4L
: n = 1, 3, 5, . . . fmedium =

f0

1 − v0/vmedium

f ′ = f

(

1 − v′

v

)

f =
f ′

1 − v′/v


