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Intro Physics Semester I Name:

Homework 15: Oscillation: One or two full answer questions will be marked. There will also be a mark
for completeness. Homeworks are due usually the day after the chapter they are for is finished. Solutions
will be posted soon thereafter. The solutions are intended to be (but not necessarily are) super-perfect and
often go beyond a fully correct answer.

Answer Table Name:

a b c d e a b c d e

1. O O O O O 31. O O O O O
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3. O O O O O 33. O O O O O

4. O O O O O 34. O O O O O

5. O O O O O 35. O O O O O
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1. “Let’s play Jeopardy! For $100, the answer is: It is a motion that repeats itself in equal time periods:
i.e., a periodic motion. Perfect repetition is an ideal case that is more or less closely approached in
reality. The repeated motion is sometimes called a cycle.”

What is a/an , Alex?

a) inhalation b) exhalation c) rotation d) accleration e) oscillation

2. Say P is the period of an oscillation. Say you observe N oscillations (or cycles) which take time NP ,
of course, The frequency of the oscillation (cycles per unit time) is given by:

a) f = NP . b) f = N/P . c) f = P/N . d) f = 1/P . e) f = N .

3. The MKS unit of frequency is the hertz (Hz). It is derived from the second:

a) 1 Hz = 1 s−1. b) 1 Hz = 1 s. c) 1 Hz = 1 s−2. d) 1 Hz = 1 s2. e) 1 Hz = 1 s−1/2.

4. The linear force law (AKA linear restoring force law, spring force law, Hooke’s law force, and
simple harmonic oscillator force law) applies approximately to a wide variety of systems. In fact,
almost any stable equilibrium system from molecules to bridges and beyond obeys the linear force
law for sufficiently small perturbations of any component around the component’s stable equilibrium
configuration. Components moving under the linear force law alone are in simple harmonic motion.
Usually some damping force affects the system. The linear force law in one-dimension with the stable
equilibrium point at the origin is given by:

a) F = −kx1/2. b) F = −kx. c) F = −kx3/2. d) F = −kx2. e) F = kx.

5. To be in stable equilibrium, an object must be subject to a restoring force. The restoring force is zero
at equilibrium and for any sufficiently small displacement from equilibrium tries to push the object back
toward equilibrium. If the kinetic energy built up by the force pushing an object back to equilibrium
is too large, then the object can OVERSHOOT the equilibrium and an oscillation results. Whether
an oscillation results or not depends on the system. In real systems in the absence of any driver force,
a damping force will usually dissipate mechanical energy above that of rest at the equilibrium point
and cause the oscillation to damp out and the object to come to rest at the equilibrium point again. If
the displacement is sufficiently small from a stable equilibrium, then the restoring force will be in most
cases linear in the displacement: i.e., for a one-dimensional case

F = −kx ,

where k is a constant and x is the displacement from the equilibrium point. The restoring force in the
small-displacement limit is often linear because:

a) of no good reason. b) nature likes discontinuities. c) nature dislikes discontinuities.
d) nature is indifferent to discontinuities. e) it’s lies, all lies.

6. If the linear force alone acts on an object, the object is a simple harmonic oscillator (SHO) and undergoes
simple harmonic motion (SHM). Apply Newton’s 2nd law to 1-dimensional SHO with linear force
F = −kx.

a) m
d2x

dt2
= kx . b) m

dx

dt
= −kx . c) m

d2x

dt2
= −kx . d) m

d2x

dt2
= − 1

kx
.

e) m
d2x

dt2
= −x .

7. The general solution to the SHO differential equation

m
d2x

dt2
= −kx

is where amplitude A and phase constant φ are set by initial conditions and angular
frequency is determined by the physics of the system itself. The motion of the solution
is called simple harmonic motion (SHM).

a) x = A cos(ωt + φ); ω =
√

k/m b) x = A cos(ωt + φ); ω =
√

m/k

c) x = A(ωt + φ); ω =
√

k/m d) x = A(ωt + φ); ω =
√

m/k e) x = A(ωt + φ); ω =
√

km

8. For a one-dimensional simple harmonic oscillator with mass m, force law F = −kx, and solution obeying
a = −ω2x, the formula for the angular frequency ω is given by:
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a) ω = m/k. b) ω =
√

k/m. c) ω =
√

m/k. d) ω = k/m. e) ω =
√

km.

9. A solution to Newton’s 2nd law for the simple harmonic oscillator is simple harmonic motion—which
is a melodious, uncomplicated motion. The solutions for displacement, velocity, and acceleration for a
case when the motion of the oscillating objects starts at time t = 0 at its maximum displacement A are,
respectively:

a) x = A sin(ωt); v = ωA cos(ωt); x = −ω2A sin(ωt).
b) x = A; v = ωA; a = ω2A.
c) x = A cos(ωt); v = −ωA cos(ωt); x = −ω2A cos(ωt).
d) x = A cos(ωt); v = −ωA sin(ωt); x = −ω2A cos(ωt).
e) x = A cos(ωt); v = ωA cos(ωt); x = ω2A cos(ωt).

10. In sinusoidal motion, an object’s position as a function of time varies like a sine or:

a) cosine curve. b) tangent curve. c) inverse tangent curve. d) inverse sine curve.
e) straight line.

11. A sinusoid repeats its behavior every time its argument increases by 2π or 360◦. An oscillation in time
described by a sinusoid repeats in a time period called the period of the oscillation. The argument of
the sinusoid in this case is ωt + phi, where ω is the angular frequency and φ is a phase constant set by
initial conditions. For a period P , the angular frequency is given by:

a) ω = 2πP . b) ω = P/(2π). c) ω = 2π/P . d) ω = 1/(2πP ). e) ω = 2πP 2.

12. For simple harmonic motion,

a) f = P = ω. b) P = 1/f = 2π/ω, f = 1/P 2 = ω/(2π)2, ω = 2πf = 2π/P .
c) P = 1/f = 2π/ω, f = 1/P = ω/(2π), ω = 2πf = 2π/P .
d) P = 1/f = 2π/ω, f = 1/P = 2πω, ω = 2πf = 2π/P .
e) P = 1/f = 1/ω, f = 1/P = ω/(2π), ω = 2πf = 1/P .

13. If x1(t) and x2(t) are solutions to a differential equation (DE), then the DE is linear if c1x1(t) + c2x2(t)
is also a solution where the c’s are arbitrary constants. The differential equation for the simple harmonic
oscillator

d2x

dt2
= −ω2x(t)

is:

a) linear. b) non-linear. c) neither linear nor non-linear. d) both linear and non-linear.
e) colinear.

14. The mechanical energy of a 1-dimensional simple harmonic oscillator of mass m and force constant k is
given by:

a) E = kx2
max = mv2

max. b) E = (1/2)kx2
max = (1/2)mv2

max. c) E = (1/2)kx2.
d) E = (1/2)mv2. e) E = mgy.

15. The projection of uniform circular motion on a line in the plane of rotation is:

a) uniform circular motion. b) a Tusi-couple motion c) simple harmonic motion.
d) oblique motion. e) round motion.

16. A phyiscal pendulum is any rigid object held by a free pivot axis: the axis supports the pendulum
againnst gravity, but exerts no torque about itself. The equation of motion of the physical pendulum
(i.e., Newton’s 2nd law applied to the physical pendulum) if only gravity torques it is:

d2θ

dt2
= −rmg

I
sin θ ,

where θ is the angle a radius from the pivot axis to the center-of-mass axis makes with a downward
vertical, r is the cylindrical radius from the pivot axis to the center-of-mass axis, m is the pendulum
mass, and I is the pendulum rotational inertia about the pivot axis. This equation has no simple
analytical solution because of:

a) general considerations. b) the I factor. c) the r factor. d) the sin θ factor.
e) darn good reasons.
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17. “Let’s play Jeopardy! For $100, the answer is:

sin θ ≈ θ ,

where θ is given in radians.

What is a/an , Alex?

a) equality b) approximate equality c) inequality d) trigonometric function
e) small-angle approximation

18. The equation of motion of the physical pendulum (i.e., Newton’s 2nd law applied to the physical
pendulum) in the small-angle approximation is given by

d2θ

dt2
= −rmg

I
θ .

We recognize this equation as the differential equation of:

a) Tusi-couple motion. b) uniform circular motion. c) simple harmonic motion.
d) straight-line motion. e) uniform motion.

19. The period of the physical pendulum (in the small-angle approximation) is

P = 2π

√

I

rmg
.

If the pendulum is shrunk to a point-mass bob, we have the simple pendulum. In this case,
and .

a) I = (1/2)mr2; P = 2π
√

r/(2g). b) I = mr2; P = 2πr/g. c) I = mr; P = 2πr/g.

d) I = mr; P = 2π
√

r/g. e) I = mr2; P = 2π
√

r/g.

20. The period of a simple pendulum is given by

P = 2π

√

r

g
,

where r is the length of the pendulum and g is the gravitational fiedl. A fiducial pendulum period (i.e.,
period that can be used as a standard for reference or quick estimation) is obtained for a pendulum of
length exactly ONE METER and assuming that g = 9.8 m/s2 exactly. What is this fiducial period to
2 significant figures? To 4 significant figures?

a) 1.0 s and 1.010 s. b) 2.0 s and 2.007 s. c) 2.0 s and 2.01 s. d) 1.0 s and 1.01 s.
e) 1.0 s and 1.1 s.

21. Without using a calculator (you’re on your honor here), what is approximately the period of a simple
pendulum of length 9 m? HINT: Just look at what the simple pendulum period formula and reflect on
the answer to the fiducial pendulum period question.

a) 9.8 s. b) 162 s. c) 2.0 s. d) 1.0 s. e) 6.0 s.

22. Time for deep thought. If you are clever (and not like your physics professor) before doing any elaborate
dynamical analysis, why should you know that the period of the simple pendulum is independent of
mass?

a) Mass is density times volume. Volume never comes into the simple pendulum problem. Ergo mass
never comes into the simple pendulum problem.

b) There no mass in the kinematic equations and thus mass can never affect the motion of anything.
The simple pendulum is included in the set of anything.

c) Physical intuition.
d) For any particle acted on only by gravity and workless forces of constraint (e.g., normal forces such

as those of a frictionless slope or of a frictionless wire for a sliding bead), the only force that can
cause acceleration is the component of gravity in the direction allowed by the constraints. This
component has mass as one of its factors and is the F in F = ma. Thus, the mass in 2nd Newton’s
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law applied to the system cancels out from both sides of the equation. The acceleration is thus
determined by g, the direction of gravity downward, and the directions allowed by the forces of
constraint. In principle, the whole kinematics of the particle can be determined from knowing
the acceleration for any location and the initial conditions. In practice, it might require elaborate
calculations including computer calculations to find the whole kinematics. But mass does not come
into the calculation. The simple pendulum fits the case just outlined. The ideal free massless
pendulum arm exerts no force in the direction the pendulum bob can move. There is no air drag.
The only force that can cause acceleration is a component of gravity. Consequently, the whole
kinematics of the pendulum bob is independent of mass. The pendulum period is part of the
kinematics. Therefore the pendulum period is independent of mass.

e) Socrates has mass.
All humans have mass.
Ergo all humans are Socrates.

23. You are Galileo Galilei (1564–1642) professor (untenured) of mathematics at the University of Pisa
circa 1590. You are red-bearded and feisty (Italian word meaning . . .). Tired of people making fun of
your redundant name (exactly so in Latin: Galileus Galileus) as if you were Humbert Humbert or some
such and bored with dropping balls off the Leaning Tower in the piazza, you seek calm in the adjacent
Cathedral of Pisa. There you notice that the Cathedral lanterns oscillate in the wind with a constant
period no matter what the amplitude of the oscillation provided the amplitude isn’t too large and that
period only varies with lantern cord length and not lantern mass as far as you can tell. At once—you
are an incomparable genius after all—you realize that pendulums would make great regulators for clocks
because:

a) it has NEVER BEEN been thought of before.
b) it has BEEN thought of before.
c) the hypnotic pendulum swinging motion would induce even deeper slumber in your less-amusing,

clockwatching students.
d) even a bad idea can make money. All that is needed is a great advertizing campaign.
e) all clocks using pendulums as regulators for the motions of the hands and the energy input to

keep the motions going would keep the periods of the hands very constant since small variations in
amplitude that arise from somewhat irregular resistive and driver forces would have little effect on
the pendulum period. Also the pendulum clocks could be kept synchronized to high accuracy despite
varying amplitudes for the pendulum motion and masses for pendulum. Of course, the effective
length of the pendulum does affect the period and has to be carefully adjusted for synchronization,
but that is easy to do. It’s one of those Eureka moments.

24. “Let’s play Jeopardy! For $100, the answer is: The motion of a system slowing down to rest at a stable
equilibrium through a series of decaying oscillations about the equilibrium point.”

What is , Alex?

a) critically motion b) underdamped motion c) overdamped motion
d) uniform circular motion e) all wet motion

25. “Let’s play Jeopardy! For $100, the answer is: The behavior of an oscillatory system driven at its natural
or resonance frequency.”

What is , Alex?

a) underdamped oscillation b) simple harmonic motion c) uniform circular motion
d) resonance or in resonance e) loco

26. An oscillatory system driven at its resonance frequency will exhibit large oscillations. Every child—
before they knew the name of torque—understood this when playing:

a) on a swing. b) on a ladder. c) soccer. d) hopscotch. e) with matches.

27. There is a simple harmonic oscillator (SHO) that takes a time ∆t = 0.75 s before it begins to repeat.
What are its (a) period P , (b) frequency f (in hertz), and (c) angular frequency ω (in radians per
second)?

28. A body of mass m = 0.12 kg is a simple harmonic oscillator (SHO) with equilibrium position x = 0,
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amplitude xmax = 8.5 cm, period P = 0.20 s, and a linear (spring-like) restoring force.

a) What is the force constant of the linear (or Hooke’s law) force?

b) What is the maximum absolute value of the force acting on the body?

c) What is the maximum absolute value of the acceleration of the body?

29. You have a block of mass m sandwiched between a bunch of springs in parallel. The whole system is a
1-dimensional system. The springs are attached to opposing walls. Some springs are from the left and
some are from the right. The block sits on a level frictionless floor. The springs are ideal. Each spring
has a force constant ki and equilibrium position xi for the center of the block: i.e., xi is where the block
center would be in equilibrium if only spring i were attached to the block.

a) What is the expression for the net force on the mass?

b) Derive the appropriate single-spring equivalent k (i.e., force constant) and xeq (i.e., equilibrium
position) expressions such that the net force expression changes to

F = −k(x − xeq) .

Why is the xeq the equilibrium position of the total system?

c) Derive the expression for the total system ω in terms of the individual spring angular frequencies
ωi and the total system period P in terms of the individual spring periods Pi.
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics
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~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant
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REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg

21 Fluids

ρ =
∆m

∆V
p =

F

A
p = p0 + ρgddepth

Pascal’s principle p = pext − ρg(y − yext) ∆p = ∆pext

Archimedes principle Fbuoy = mfluid disg = Vfluid disρfluidg

equation of continuity for ideal fluid RV = Av = Constant

Bernoulli’s equation p +
1

2
ρv2 + ρgy = Constant

22 Oscillation

P = f−1 ω = 2πf F = −kx PE =
1

2
kx2 a(t) = − k

m
x(t) = −ω2x(t)

ω =

√

k

m
P = 2π

√

m

k
x(t) = A cos(ωt) + B sin(ωt)

Emec total =
1

2
mv2

max =
1

2
kx2

max =
1

2
mv2 +

1

2
kx2

P = 2π

√

I

mgr
P = 2π

√

r

g


