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Intro Physics Semester I Name:

Homework 13: Gravity: One or two full answer questions will be marked. There will also be a mark for
completeness. Homeworks are due usually the day after the chapter they are for is finished. Solutions will
be posted soon thereafter. The solutions are intended to be (but not necessarily are) super-perfect and often
go beyond a fully correct answer.
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1. “Let’s play Jeopardy! For $100, the answer is: He/she discovered the gravitation law (AKA law of
universal gravitation) of classical physics. This law shows that the same gravity that holds on Earth
also holds throughout the space—insofar as classical physics applies.”

Who is , Alex?

a) Galileo (1564–1642) b) Isaac Newton (1643–1727) c) James Clark Maxwell (1831–1879)
d) Albert Einstein (1879–1955) e) Emmy Noether (1882–1935)

2. William Stukeley (1687–1765) recorded a conversation with Newton at Kensington, 1726 April 15 (less
than year before Newton’s death at 84):

“when formerly, the notion of gravitation came into his mind. It was occasioned by the fall of
a/an , as he sat in contemplative mood. Why should that always descend
perpendicularly to the ground, thought he to himself. Why should it not go sideways or upwards,
but constantly to the earth’s centre.”

a) peach b) pear c) apple d) orange e) sparrow

3. Gravity is the force between systems with mass and it is:

a) always attractive. b) always REPULSIVE, except perhaps in some cosmological
applications. c) either attractive or REPULSIVE. d) neither attractive nor
REPULSIVE. e) neither fish nor fowl.

4. Newton’s law of universal gravitation for the force exerted by point mass 1 on point mass 2 (where from
1 to 2 is indicated by subscript 12) is:

a) ~F12 = −Gm1m2r
2r̂12 . b) ~F12 = −Gm1

m2
r2r̂12 . c) ~F12 = −Gm1

m2
rr̂12 .

d) ~F12 = −Gm1m2

r2
r̂12 . e) ~F12 = −Gm1m2

r3
r̂12 .

5. Newton’s law of gravity is:

a) inconsistent with Newton’s 3rd law of motion.
b) consistent with Newton’s 3rd law of motion. c) violates Newton’s 3rd law of motion.
d) Newton’s 3rd law of motion. e) Newton’s 2nd law of motion.

6. “Let’s play Jeopardy! For $100, the answer is: It is the gravitational constant with MKS units Nm2/kg2

It is actually the poorest known of the fundamental constants because gravity is such a weak force
between laboratory size objects which are used to measure it.”

What is , Alex?

a) 1.000 . . . b) 2.99792458× 10−8 c) 2.99792458× 108 d) 6.67384(80)× 1011

e) 6.67384(80)× 10−11

7. Newton’s classical gravity law is written for point masses. But this presents a paradox since point
masses, at least classical point masses (and maybe not even quantum mechanical point masses, but who
knows) do not really exist. The paradox is resolved by regarding the law as an ideal limiting form from
which actual gravitational forces between masses can be calculated. Four cases of the application of
Newton’s gravity law come to mind for the situation of two objects.

1. The general case: Here one makes the classical continuum assumption for matter and integrates up
over the matter of the attractor and matter of the attractee in order to find the net force of the
attractor on the attractee. As an equation for attractor (object 1) and attractee (object 2), one has

~F12 = −
∫ ∫

Gρ(~r1)ρ(~r2)

|~r2 − ~r1|2
(~r2 − ~r1)

|~r2 − ~r1|
dV1 dV2 ,

where ~F12 is the force of object 1 on object 2, G = 6.67384(80) × 10−11 Nm2/kg2 (Wikipedia:
Gravitational constant 2012mar30) is the gravitational constant, ρ designates density, ~r1 is the
position vector for object 1, ~r2 is the position vector for object 1, and the integrals are over the
volumes V1 and V2 of objects 1 and 2. If one can’t make the continuum approximation for some
reason, a double summation over point particles can be done.
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2. The case for general objects that are relatively far apart: Here the size scales of the two objects
are both much smaller than the distance between them. In this case, Newton’s gravity law applies
directly as an approximation taking some fiducial points in the objects as being their equivalent
point locations. The approximation becomes better, the greater the relative distance and the more
cleverly the fiducial points are chosen (e.g., their centers of mass, but there may be even better
choices), and approaches being exact in the limit that the relative distance goes to infinity. We will
not prove this approximation.

3. The case of spherically symmetric objects that are not overlapping: It can be proven that the
gravitational field of a spherically symmetric object outside of the object is exactly the field that a
point mass would give according to Newton’s gravity law if the point mass had the same mass as
the object and was located where the object has its center. (The gravitational field is the force per
unit mass on a point mass.) The proof is by Gauss’s law for gravitation which itself is proven from
Newton’s law. Then using the logic and Newton’s 3rd law, one can prove that non-overlapping
spherically symmetric objects attract each other exactly as if they were point masses of the sort
specified. Newton himself first proved this result. It was an essential result in understanding the
motions of the larger solar system bodies which are nearly spherically symmetric.

4. The case of a relatively large, spherically symmetric object and a relatively small general object
outside of the spherically symmetric object. In this case, Newton’s gravity law approximately
applies as if both objects were point masses: the large object’s equivalent point mass is at its center
and has its mass and the small object’s equivalent point is located at some fiducial point inside of it
(its center of mass usually being the best choice) and its mass. For planet and human size objects,
the application of gravitation law is virtually exact. This case follows directly from:

a) Newton’s 1st law. b) Newton’s 2nd law. c) Newton’s 3rd law. d) cases 2 and 3.
e) case 3.

8. A fiducial gravitational force is the force between two non-overlapping spherically symmetric objects
each of mass 1 kg with the center-to-center distance one meter. The magnitude of this force is:

a) 1. b) 1/2. c) 6.67428× 1011. d) 1.67 × 10−11. e) 6.67384× 10−11.

9. Using Newton’s gravitation law

~F12 = −Gm1m2

r2
r̂12

(G = 6.67384(80)× 10−11 Nm2/kg2: e.g., Wikipedia: Gravitational constant, 2012mar30) calculate the
magnitude of the force between two 3 kg objects 3 m apart. The answer is:

a) 60.1 × 10−11 ≈ 12 × 10−11 lb. b) 20.0 × 10−11 ≈ 4 × 10−11 lb.
c) 6.674 × 10−11 N ≈ 1.5 × 10−11 lb. d) 2.224× 10−11 N ≈ 0.5 × 10−11 lb.
e) 0.741 × 10−11 N ≈ 0.15 × 10−11 lb.

10. Two of the basic constituents of ordinary matter are the electron (mass m = 9.10938215(45)×10−31kg,
charge q = −1.602176487(40)× 10−19C) and the proton (mass m = 1.672621636(83)× 10−27 kg, charge
q = 1.602176487(40)× 10−19 C). The magnitude of the electric force between these particles is given by
Coulomb’s law

F =
kq1q2

r2
12

,

where q1 the charge on particle 1, q2 the charge on particle 2, r12 is the distance between the particles,
and k = 8.987551787 . . .× 109 in MKS units is Coulomb’s constant. What is the ratio of the magnitude
of the gravitational force between the particles to the Coulomb force between?

a) 1.000 . . .. b) 2.3 × 10−39. c) 2.3 × 1039. d) 4.4 × 1040. e) 4.4 × 10−40.

11. “Let’s play Jeopardy! For $100, the answer is: This force is essential in making the large-scale structure
of objects (of the kind we know) from middling asteroids to super-clusters of galaxies and perhaps to
the universe as whole.”

a) What is , Alex?

a) a contact force b) friction c) a tension force d) a normal force e) gravity

12. Consider two spherically symmetric objects and the gravitational force between them. What is force for
separation r relative to the force for separation r0 (i.e., F (r)/F (r0)?
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a) (r/r0)
2. b) r/r0. c) r0/r. d) (r0/r)2. e) (r/r0)

4.

13. Given two spherically symmetric objects, if their separation is doubled, the force of gravity between
them and, alternatively, if one object’s mass is doubled, the force of gravity between
them .

a) decreases by 1/4; is doubled b) decreases by 1/2; is doubled
c) is doubled; decreases by 1/2 d) decreases by 1/4; increases by 4
e) stays the same; stays the same

14. An object has mass x and weight y on the Earth’s surface. What is its mass and weight at 2 Earth radii
above the Earth’s surface? Note ABOVE the Earth’s surface, not FROM the Earth’s center.

a) x and y/2. b) x/2 and y/2. c) x and y/9. d) x and y/4. e) x/9 and y/9.

15. “Let’s play Jeopardy! For $100, the answer is: It can be defined as the gravitational force per unit mass
at any point in space. But more fundamentally, it is a vector field that is the cause of the gravitational
force: the conventional symbol for this vector field is ~g. In modern, physics force fields are real things
that are spread through space and cause forces.”

What is , Alex?

a) the gravitational force b) gravity c) levity d) the gravitational field
e) Gauss’s law

16. The usual symbol for the gravitational field is ~g which has magnitude g. A special case of the
gravitational field is the one near the Earth’s surface. For this case, the gravitational field has the fiducial
magnitude g = 9.8 N/kg and is often called little g—big G is the gravitational constant. Context must
decide if g means the general gravitational field magnitude or the special case of the gravitational field
magnitude near the Earth’s surface. The gravitational force on a point mass m in a general gravitational
field ~g is given by . The same formula applies to an extended object provided the field is
uniform over the extent of the object.

a) ~F = ~g/m b) ~F = m/~g c) ~F = m~g d) ~F = m2~g e) ~F = ~g/m2

17. The gravitational field

~g = −Gm

r2
r̂

is that of a:

a) point mass at the origin. b) cubical mass centered on the origin.
c) tetrahedral mass centered on the origin. d) dodecahedral mass centered on the origin.
e) point mass NOT at the origin.

18. The gravitational field

~g = −Gm

r2
r̂

is that of spherically symmetric mass distribution centered on the origin where m is all the mass
within the sphere of radius . This field result can be easily derived from Gauss’s law for
gravitation.

a) 2r. b) r2. c) 3r. d) r. e) 1/r2.

19. Given the Earth’s mass MEa = 5.9736×1024 kg and mean radius REa = 6.37101×106 m (e.g., Wikipedia
2007sep25), compute the magnitude of the Earth’s gravitational field (force per unit mass) at the mean
Earth’s surface assuming spherical symmetry. The formula for the magnitude of gravitational field
outside of a spherically-symmetric body of mass M is

g =
GM

r2

where r the distance from the body center and the current favored value for the gravitational
constant G = 6.67384(80)× 10−11 Nm2/kg2 (e.g., Wikipedia: Gravitational constant 2012mar30). By
desimplifying the expression for g, one can create a fiducial-value (i.e., reference-value) expression for
the magnitude of the gravitational field g in terms of the Earth’s values used as fiducial values. Identify
this expression.



5

a) 9.822 N/kg× (m/MEa)(REa/r)2 b) 6.822 N/kg × (m/MEa)(REa/r)
c) 6.822 N/kg × (MEa/m)(REa/r) d) 9.822 N/kg × (MEa/m)(r/REa)
e) 9.700 N/kg × (m/MEa)(r/REa)

20. Given that the Moon’s mass MMo = 0.0123×MEa ≈ (1/80)MEa and mean radius REa = 0.273×REa ≈
(1/4)REa (e.g., Wikipedia 2007sep25) (where MEa is the Earth’s mass and REa is the Earth’s mean
radius), compute to 3 SIGNIFICANT FIGURES the gravitational field at the Moon’s surface and
give it in MKS and in Earth g-force (i.e., in units of gEa = 9.822 N/kg, the Earth’s surface mean
gravitational field here with a subscript to differentiate it from the more general meaning of g).

a) 2 N/kg; 1/5. b) 9.8225 N/kg; 1.00. c) 1.62 N/kg; 1/3. d) 1.62 N/kg; 0.165.
e) 9.8225 N/kg; 1/5.

21. Calculate the gravitational acceleration g for the Earth’s surface given G = 6.67384(80)×10−11 Nm2/kg2

(Wikipedia: Gravitational constant 2012mar30), Earth mass ME = 5.9736 × 1024 kg, and mean Earth
radius RE = 6.37101 × 106 m (Wikipedia: 2007sep25). What is the percentage difference from the
fiducial gfid = 9.8 m/s2 that is commonly used.



6

Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67384(80)× 10−11 Nm2/kg2 (2012, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics
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~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ

20 Gravity

~F1 on 2 = −Gm1m2

r2
12

r̂12 ~g = −GM

r2
r̂

∮

~g · d ~A = −4πGM

PE = −Gm1m2

r12
V = −GM

r
vescape =

√

2GM

r
vorbit =

√

GM

r

P 2 =

(

4π2

GM

)

r3 P =

(

2π√
GM

)

r3/2 dA

dt
=

1

2
r2ω =

L

2m
= Constant
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REarth,mean = 6371.0 km REarth,equatorial = 6378.1 km MEarth = 5.9736× 1024 kg

REarth mean orbital radius = 1.495978875× 1011 m = 1.0000001124 AU ≈ 1.5 × 1011 m ≈ 1 AU

RSun,equatorial = 6.955× 108 ≈ 109 × REarth,equatorial MSun = 1.9891× 1030 kg


