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Intro Physics Semester I Name:

Homework 10: Rotational Kinematics: One or two full answer questions will be marked. There will
also be a mark for completeness. Homeworks are due usually the day after the chapter they are for is
finished. Solutions will be posted soon thereafter. The solutions are intended to be (but not necessarily are)
super-perfect and often go beyond a fully correct answer.

Answer Table Name:

a b c d e a b c d e

1. O O O O O 31. O O O O O

2. O O O O O 32. O O O O O

3. O O O O O 33. O O O O O

4. O O O O O 34. O O O O O

5. O O O O O 35. O O O O O

6. O O O O O 36. O O O O O

7. O O O O O 37. O O O O O

8. O O O O O 38. O O O O O

9. O O O O O 39. O O O O O

10. O O O O O 40. O O O O O

11. O O O O O 41. O O O O O

12. O O O O O 42. O O O O O

13. O O O O O 43. O O O O O

14. O O O O O 44. O O O O O

15. O O O O O 45. O O O O O

16. O O O O O 46. O O O O O

17. O O O O O 47. O O O O O

18. O O O O O 48. O O O O O

19. O O O O O 49. O O O O O

20. O O O O O 50. O O O O O

21. O O O O O 51. O O O O O

22. O O O O O 52. O O O O O

23. O O O O O 53. O O O O O

24. O O O O O 54. O O O O O

25. O O O O O 55. O O O O O

26. O O O O O 56. O O O O O

27. O O O O O 57. O O O O O

28. O O O O O 58. O O O O O

29. O O O O O 59. O O O O O

30. O O O O O 60. O O O O O
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004 qmult 00400 1 1 2 easy memory: dividing a circle
1. A circle can be divided into:

a) 360 divisions only. b) any number of divisions you like. c) 2π divisions only.
d) π divisions only. e) 360 or 2π divisions only.

SUGGESTED ANSWER: (b)

Wrong answers:

a) A nonsense answer. Redaction: Jeffery, 2008jan01

004 qmult 00410 1 1 2 easy memory: radians in a circle 1
2. How many radians are there in a circle?

a) π. b) 2π. c) 3π. d) 360◦. e) 360.

SUGGESTED ANSWER: (b)

Wrong answers:

e) The trick answer.

Redaction: Jeffery, 2001jan01

004 qmult 00420 1 5 1 easy thinking: 24 factors in 360
3. The division of the circle into 360◦ was an arbitrary choice—and we don’t know why. We just know

the ancient Mesopotamian mathematicians and astronomers did it this way—you know Mesopotamia—
ancient Iraq: “the cradle of civilization”. Their choice was just adopted by the ancient Greeks and got
passed on to us. In the French Revolutionary epoch, the decimal system was adopted for most measures,
but the revolutionaries didn’t get around (you might say) to the circle. We can guess that one reasons is
that the ancient Mesopotamians had a preference for whole number arithmetic particularly in division
and 360 has a lot of whole number factors. How many whole number (i.e., integer) factors does 360
have counting 1 and 360 itself?

a) 24. b) 360. c) 6. d) 7. e) 12.

SUGGESTED ANSWER: (a)

Below are the whole number factors of 360 table format:

count factor complement factor

2 1 360
4 2 180
6 3 120
8 4 90

10 5 72
12 6 60
14 8 45
16 9 40
18 10 36
20 12 30
22 15 24
24 18 20

Wrong answers:

b) A specious guess.

Redaction: Jeffery, 2008jan01

004 qmult 00430 1 3 4 easy math: radian to degree conversion
4. What is the approximate conversion factor from radians to degrees?

a) 1/60degrees/radian. b) π degrees/radian. c) 2π degrees/radian.
d) 60 degrees/radian. e) 360 degrees/radian.
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SUGGESTED ANSWER: (d)

Behold

180◦ = π , and so
180◦

π
≈ 57.2958 ≈ 60 degrees/radian .

Wrong answers:

a) Wrong conversion factor: this is for degrees to radians.

Redaction: Jeffery, 2008jan01

004 qmult 00440 1 5 5 easy thinking: the 2 pi unit ti
5. There are 2π radians in a circle. It’s rather inconvenient that this means that there are 2π = 6.2831853 . . .

radians in a circle which is an irrational number. For convenience, we could use the revolution (with
sympbol Rev: vocalized rev) as a new unit: 1 Rev = 2π. One hundredth of an Rv would be a:

a) exaRev. b) megaRev. c) kiloRev. d) deciRev. e) centiRev.

SUGGESTED ANSWER: (e)

I think the idea of revolutions makes sense to me. We could then drop this non-metric degree
unit and use centiRevs (3.6◦) and milliRevs (0.36◦) for most purposes. But no one ever listens to
me.

Wrong answers:

a) Eek, 1018 ti.

Redaction: Jeffery, 2008jan01

004 qmult 00450 1 3 1 easy math: hand angular measure
6. Approximately, at arm’s length a finger subtends 1◦, a fist 10◦, and a spread hand 18◦. These numbers,

of course, vary a bit depending on person and exactly how the operation is done. What are these angles
approximately in radians?

a) 1/60, 1/6, and 1/3 radians. b) 60, 600, and 1800 radians.
c) π/12, π/3, and π/2 radians. d) π/12, π/3, and π radians. e) π/12, π/3, and 2π radians.

SUGGESTED ANSWER: (a)

I’ve used the conversion factor (π radians)/(180◦ approximated to (1 radian/60◦.

Wrong answers:

b) This looks like a conversion from radians to degrees where one uses the approximate conversion
factor 60 degrees/radian.

Redaction: Jeffery, 2008jan01

004 qmult 00460 1 5 5 easy thinking: covering the Moon
7. Can you cover the Moon with your finger held at arm’s length? HINT: You could try for yourself if

you are not in a a test mise en scène.

a) No. The Moon is much larger in angle than a finger. Just think how huge the Moon looks on the
horizon sometimes.

b) It depends critically on the size of one’s finger and arm. People with huge hands can to it and those
without can’t.

c) Yes. A finger at arm’s length typically subtends about 10◦ and the Moon subtends 0.01◦.
d) No. The Moon’s diameter is about 3470 km and a finger is about a centimeter or so in width.
e) Usually yes. A finger at arm’s length typically subtends about 1◦ and the Moon subtends 0.5◦.

SUGGESTED ANSWER: (e)

Wrong answers:

d) Yes, this makes sense.

Redaction: Jeffery, 2008jan01

004 qmult 00470 1 1 5 easy memory: small angle approximations
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8. For small angles θ measured in radians and with increasing accuracy as θ goes to zero (where the
formulas are in fact exact), one has the small angle approximations:

a) sin θ ≈ cos θ ≈ 1 − 1

2
θ2. b) cos θ ≈ tan θ ≈ 1 − 1

2
θ2. c) sin θ ≈ cos θ ≈ θ.

d) cos θ ≈ tan θ ≈ θ. e) sin θ ≈ tan θ ≈ θ.

SUGGESTED ANSWER: (e)

The proof of these approximations follows from the Taylor expansions of sine and tangent
about θ = 0: i.e.,

sin θ =
∑

n=0

1

(2n + 1)!
θ2n+1 = θ − 1

6
θ3 +

1

120
θ5 − 1

5040
θ7 + . . . ,

tan θ = θ +
1

3
θ3 +

2

15
θ5 +

17

315
θ7 + . . . ,

where one can get these from

http://en.wikipedia.org/wiki/Tangent_function#Series_definitions .

Wrong answers:

a) One has cos θ ≈ 1 − (1/2)θ2 for small angles, in fact.
b) One has cos θ ≈ 1 − (1/2)θ2 for small angles, in fact.

Redaction: Jeffery, 2008jan01

011 qmult 00100 1 4 4 easy deducto-memory: rotational kinematics
9. “Let’s play Jeopardy! For $100, the answer is: It is the study of the description of rotational motion or

angular motion without reference to forces or torques.”

What is , Alex?

a) translational dynamics b) rotational dynamics c) translational kinematics
d) rotational kinematics e) rotational freight

SUGGESTED ANSWER: (d)

Wrong answers:

c) Exactly wrong.
e) A nonsense answer.

Redaction: Jeffery, 2008jan01

011 qmult 00110 1 1 3 easy memory: 1-d rotational kinematics
10. The rotational kinematics analog to 1-dimensional translational (or rectilinear) motion is:

a) general rotation. b) kernal rotation. c) rotation about a single fixed axis.
d) rotation about two axes. e) rotation about three axes.

SUGGESTED ANSWER: (c)

Wrong answers:

b) A nonsense answer, but better than colonel rotation.

Redaction: Jeffery, 2008jan01

011 qmult 00120 1 1 1 easy memory: angular displacement
11. A change in angular position of a point is a/an:

a) angular displacement. b) angular velocity. c) angular acceleration.
d) translational velocity. e) translational acceleration.

SUGGESTED ANSWER: (a)

Wrong answers:

b) Nah.
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Redaction: Jeffery, 2008jan01

011 qmult 00130 1 1 2 easy memory: angular variables
12. The usual symbols for the angular kinematic variables angular displacement, angular velocity, and

angular acceleration all for rotational motion around a single fixed axis are, respectively:

a) α, β, γ. b) θ, ω, α. c) θ, α, ω. d) ω, θ, α. e) δ, ǫ, ζ.

SUGGESTED ANSWER: (b)

Wrong answers:

a) Just the first three small Greek letters.

Redaction: Jeffery, 2008jan01

011 qmult 00140 1 1 3 easy memory: angular velocity defined
13. About a single fixed axis,

ω = lim
∆t→0

∆θ

∆t
or, if you know calculus, ω =

dθ

dt

is the definition of:

a) angular displacement. b) angular acceleration. c) angular velocity.
d) angular momentum. e) torque.

SUGGESTED ANSWER: (c)

Wrong answers:

a) Nope.

Redaction: Jeffery, 2008jan01

011 qmult 00150 1 1 2 easy memory: angular acceleration defined
14. About a single fixed axis,

α = lim
∆t→0

∆ω

∆t
or, if you know calculus, α =

dω

dt

is the definition of

a) angular displacement. b) angular acceleration. c) angular velocity.
d) angular momentum. e) torque.

SUGGESTED ANSWER: (b)

Wrong answers:

a) Nope.

Redaction: Jeffery, 2008jan01

011 qmult 00180 1 1 3 easy memory: rotational and tangential variables
15. The formulas

∆s = ∆θr , v = ωr , a = αr

(where r is the radius of circular motion) relate the rotational variables to the analog:

a) units. b) transgressional variables. c) tangential variables. d) angular units.
e) translational units.

SUGGESTED ANSWER: (c)

Wrong answers:

b) Translational variables are arguably correct, but not the best answer in this context, but I
thought better not provoke any discussion anyway.

Redaction: Jeffery, 2008jan01
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011 qmult 00200 1 4 2 easy deducto-memory: rotational kinematic equations

16. The rotational constant-angular-acceleration kinematic equations:

a) have no resemblance to the linear kinematic equations.

b) are exactly the same as the linear kinematic equations, except that the angular kinematic equations
relate ANGULAR rather than linear variables.

c) are exactly the same as the linear kinematic equations, except that the angular kinematic equations
relate LINEAR rather than angular variables.

d) do not allow for angular acceleration.

e) include torque terms.

SUGGESTED ANSWER: (b)

Wrong answers:

c) Oh, c’mon.

Redaction: Jeffery, 2001jan01

011 qmult 00202 1 1 4 easy memory: independent rot. kin. eq.

17. The number of ALGEBRAICALLY INDEPENDENT rotational constant-angular-acceleration
equations is:

a) 5. b) 4. c) 3. d) 2. e) 1.

SUGGESTED ANSWER: (d)

Wrong answers:

a) In my formulation there are 5 equations, but only 2 are independent.

Redaction: Jeffery, 2008jan01

011 qmult 00232 1 1 5 easy memory: timeless equation use

18. The rotational constant-angular-acceleration equation

ω2 = ω2
0 + 2α∆θ

by itself alone does NEVER allows you to solve for:

a) α. b) ∆θ. c) ω0. d) ω. e) t.

SUGGESTED ANSWER: (e)

The equation is what I call the timeless equation.

Wrong answers:

a) Given the other 3 variables that appear in the equation you can solve for this.

Redaction: Jeffery, 2008jan01

011 qmult 00310 1 3 3 easy math: find the initial omega 1

19. A wheel spins π radians in 10.0 s with an angular acceleration of 4.00 radians/s2. What is its final
angular velocity?

a) 80.1 radians/s. b) 203 radians/s. c) 20.3 radians/s. d) 3.14 radians/s.
e) 6.28 radians/s.

SUGGESTED ANSWER: (c)

Of the 5 standard variables (α, ω0, ω, ∆θ, t) of the (constant-angular-acceleration) rotational
kinematic equations, we don’t know ω nor ω0. We don’t want to know ω0. This looks like a job for
the rarely used 5th rotational constant-acceleration kinematic equation

∆θ = −1

2
αt2 + ωt
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since it doesn’t contain the unwanted variable ω0, and so allows a solution for the unknown ω from
one equation. Behold:

ω =
∆θ + (1/2)αt2

t
=

π + 200

10.0
= 20.3 radians/s .

Wrong answers:

b) Forgot to divide by time.

Fortran-95 Code
print*

pi_con=acos(-1.d0)

theta=pi_con

t=10.d0

alpha=4.d0

! theta=-(1/2)*alpha*t**2+omega*t ! Rarely used 5th kinematic equation.

! omega=(theta+(1/2)*alpha*t**2)/t

omega=(theta+.5d0*alpha*t**2)/t

print*,’omega’

print*,omega

! 20.3141592653590

Redaction: Jeffery, 2008jan01

011 qmult 00440 2 3 3 mod. math: discus centripetal and tangential acceleration
20. A discus thrower (in Greek, a Diskobolos) accelerates a discus from rest through π radians accelerating

it from angular velocity 0 to angular velocity 15 rad/s. We idealize his motion as circular with radius
r = 0.81 m. The time of the throwing motion is 0.27 s. What is the net TRANSLATIONAL

acceleration (not tangential acceleration) of the discus at the end of the throwing motion just before
release? Give the direction of acceleration relative to the inward radial direction.

a) 200 m/s2; 10◦. b) 13.9 m/s2; 188◦. c) 188 m/s2; 13.9◦. d) 150 m/s2; 15◦.
e) 100 m/s2; 50◦.

SUGGESTED ANSWER: (c)

Behold:

α =
ω − ω0

t
, atan = αr , acen = ω2r ,

where atan is the tangential acceleration and acen is the centripetal acceleration. We can then find
the acceleration magnitude from Pythagorean theorem:

a =
√

a2
cen + a2

tan = 188 m/s2 .

The angular direction φ is given by

φ = tan−1

(

atan

acen

)

= 13.9◦ .

Wrong answers:

a) A nonsense answer.

Fortran-95 Code
print*

omega0=0.d0

omega=15.d0

t=.27d0

r=.81d0

alpha=(omega-omega0)/t

at=alpha*r
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ac=omega**2*r

a=sqrt(ac**2+at**2)

phi=atan(at/ac)*raddeg

print*,’a,phi’

print*,a,phi

! 187.72336695254534 13.869686438505038

Redaction: Jeffery, 2008jan01

011 qfull 00330 1 3 0 easy math: Waldo centrifuge, Waldo orbit
Extra keywords: just rotational kinematics.

21. Waldo’s back—you know, Waldo Pepper, the Playful Pig—just accept it. This time, the Bold Boar
has decided to become an astronaut and is training on NASA’s giant centrifuge—the one in the film
The Right Stuff. Let’s guess it has a radius of 10 m. The centrifuge spins in the horizontal: i.e., the
centrifuge axis is perpendicular to the ground.

a) Starting from rest the centrifuge goes into a constant angular acceleration phase for 10 s. At this
point Waldo—who does indeed have a mass of 150 kg—notes that the vertical weighing scale he
is nauseatingly pressed on reads 3000 N. What is the centripetal force on Waldo and what kind of
force is the centripetal force?

b) The Sentient Swine now does some math—some correct math. What does Waldo find for his
tangential velocity at the 10 s mark? What does he find for his angular velocity at the 10 s mark?

c) Doing a little more correct math, Waldo now finds his angular acceleration from time zero to the
10 s mark. What is this angular acceleration?

d) At this point, the Shaken Bacon does a little Gedanken experiment—just like Einstein—“what if I
instantaneously left NASA’s big blender and found myself 1000 KILOMETERS from the center
of Pluto (formerly the 9th planet) and moving perpendicularly to the line to Pluto in free space, but
with my current velocity?” What in this case would Waldo’s angular velocity be about Pluto—for
an instant since after that the Heck-of-a-Hog knows his orbital path will almost certainly not be
circular.

SUGGESTED ANSWER:

a) Waldo’s pressing on the weighing scale causes it to read 3000 N means that the weighting scale
is forcing Waldo into circular motion with a force of 3000 N. The weighing scale force is a
normal force. At least it can be called that viewing it from the outside. Internally, the force is
probably a spring force of some kind. Note that there must be some normal force by the floor
to hold Waldo up against gravity too, but that doesn’t come into the problem.

b) Well from

Fcentripetal =
mv2

r
,

Waldo finds his tangential velocity to be

v =

√

rF

m
=

√

10 × 3000

150
=

√
200 ≈ 14.142 m/s

and his angular velocity is

ω =
v

r
≈ 1.4142 radians/s .

c) Well we have the angular kinematic equation with constant acceleration

ω = αt + ω0 ,

where ω is the angular velocity, α is the angular acceleration, t is time, and ω0 is the initial
angular velocity. Rearranging and putting in the numbers, Waldo finds

α =
ω − ω0

t
≈ 1.4142

10
= 0.14142 radians/s2 .
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d) Behold:

ω =
v

r
≈ 14.142

106
= 1.4142× 10−5 radians/s .

Our porcellian friend has actually goofed. At 1000 km from Pluto’s center, he is actually
embedded in Pluto which has a mean radius of 1195 km (Wikipedia 2007nov07). But it’s only
a Gedanken experiment.

Waldo probably was thinking of 1000 km from Pluto’s surface: i.e., 2195 km from Pluto’s
center. In this case, he would be in an orbit—probably a pretty measly orbit with an initial
speed of only 10 m/s which sounds pretty small for orbiting any significant celestial body. I
bet Waldo would go into a narrow nearly parabolic orbit and crash onto Pluto. For a circular
orbit, Waldo would need

v =

√

GM

r
≈

√

7 × 10−11 × 1.3 × 1022

2.2 × 106
≈ 6 × 102 = 600 m/s

(using values from Wikipedia, 2007nov07). Well that’s not vastly bigger than Waldo’s speed.
But I still think there’s no chance. He’d crash. Of course, it’s all a dream: he’s still orbiting
in the centrifuge.

Redaction: Jeffery, 2008jan01
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67428(67)× 10−11 Nm2/kg2 (2006, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy

15 Momentum
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~Fnet = m~acm ∆KEcm = Wnet,external ∆Ecm = Wnot

~p = m~v ~Fnet =
d~p

dt
~Fnet =

d~ptotal

dt

m~acm = ~Fnet non-flux + (~vflux − ~vcm)
dm

dt
= ~Fnet non-flux + ~vrel

dm

dt

v = v0 + vex ln
(m0

m

)

rocket in free space

16 Collisions

~I =

∫

∆t

~F (t) dt ~Favg =
~I

∆t
∆p = ~Inet

~p1i + ~p2i = ~p1f + ~p2f ~vcm =
~p1 + ~p2

mtotal

KEtotal f = KEtotal i 1-d Elastic Collision Expression

v1′ =
(m1 − m2)v1 + 2m2v2

m1 + m2
1-d Elastic Collision Expression

v2′ − v1′ = −(v2 − v1) vrel′ = −vrel 1-d Elastic Collision Expressions

17 Rotational Kinematics

2π = 6.2831853 . . .
1

2π
= 0.15915494 . . .

180◦

π
= 57.295779 . . . ≈ 60◦

π

180◦
= 0.017453292 . . . ≈ 1

60◦

θ =
s

r
ω =

dθ

dt
=

v

r
α =

d2θ

dt2
=

dω

dt
=

a

r
f =

ω

2π
P =

1

f
=

2π

ω

ω = αt + ω0 ∆θ =
1

2
αt2 + ω0t ω2 = ω2

0 + 2α∆θ

∆θ =
1

2
(ω0 + ω)t ∆θ = −1

2
αt2 + ωt

18 Rotational Dynamics
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~L = ~r × ~p ~τ = ~r × ~F ~τnet =
d~L

dt

Lz = RPxy sin γL τz = RFxy sinγτ Lz = Iω τz,net = Iα

I =
∑

i

miR
2
i I =

∫

R2ρ dV Iparallel axis = Icm + mR2
cm Iz = Ix + Iy

Icyl,shell,thin = MR2 Icyl =
1

2
MR2 Icyl,shell,thick =

1

2
M(R2

1 + R2
2)

Irod,thin,cm =
1

12
ML2 Isph,solid =

2

5
MR2 Isph,shell,thin =

2

3
MR2

a =
g sin θ

1 + I/(mr2)

KErot =
1

2
Iω2 dW = τz dθ P =

dW

dt
= τzω

∆KErot = Wnet =

∫

τz,net dθ ∆PErot = −W = −
∫

τz,con dθ

∆Erot = KErot + ∆PErot = Wnon,rot ∆E = ∆KE + KErot + ∆PE = Wnon + Wrot

19 Static Equilibrium

~Fext,net = 0 ~τext,net = 0 ~τext,net = τ ′

ext,net if Fext,net = 0

0 = Fnet x =
∑

Fx 0 = Fnet y =
∑

Fy 0 = τnet =
∑

τ


