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Intro Physics Semester I Name:

Homework 8: Potential Energy and Mechanical Energy: One or two or no full answer questions
will be marked. There will also be a mark for completeness. Homeworks are due usually the day after the
chapter they are for is finished. Solutions will be posted soon thereafter. The solutions are intended to be
(but not necessarily are) super-perfect and often go beyond a fully correct answer.
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1. Potential energy is:

a) the energy of position: it exists for nonconservative forces.
b) the energy of position: it exists for conservative forces.
c) the energy of motion: its formula is PE = (1/2)mv2.
d) the energy of position: its formula is PE = (1/2)mv2.
e) heat energy.

2. The work done by a conservative force on an object while the object moves on a path between two
endpoints is:

a) INDEPENDENT of the path and endpoints.
b) DEPENDENT on the path.
c) INDEPENDENT of the path between the endpoints.
d) DEPENDENT on the path, but NOT on the endpoints.
e) equal to the path length.

3. “Let’s play Jeopardy! For $100, the answer is: ∆PE = −W .”

a) What is the formula relating POTENTIAL energy change in a conservative force field to work
done by the conservative force (i.e., what is the general potential energy formula), Alex?

b) What is Faraday’s law, Alex?
c) What are capacitors, Alex?
d) What is . . . no, no wait . . . what is unicorn circular motion, Alex?
e) What is the formula relating KINETIC energy change in a conservative force field to work done

by the conservative force (i.e., what is the work-kinetic-energy theorem), Alex?

4. “Let’s play Jeopardy! For $100, the answer is: Energy X for a force is an energy type defined, not by its
particular intrinsic nature, but because its value for a body is set by the body’s location in space. So
energy X is a position energy—and probably should have been called that—but it’s too late to change
centuries of tradition. It is always true that in any real physical case of energy X, the energy is by
its nature some kind of field energy: e.g., electric field energy, magnetic field energy, gravitational field
energy. A particular field energy may be a potential energy or not depending on the actual system
considered. Energy X for some unreal imagined kind of force does not have any more fundamental
explanation—unless one imagines one.”

What is , Alex?

a) polecat b) pole energy c) potentate energy d) potent energy e) potential energy

5. Whether a force is conservative or not depends not only on the fundamental nature of the force, but also
on the which is being considered. For example, the electric force is usually mentioned as
a conservative force, but there are in which it is not: for example, those in which it is
generated by the Maxwell-Faraday’s law. For another example, the magnetic force is often mentioned
as a non-conservative force, but there in which it is: for example, magnetic dipoles are
subject to a conservative magnetic force.

a) force/forces b) horse/horses c) law/laws d) motion/motions e) system/systems

6. Two forces that are conservative in ordinarily-thought-of systems are:

a) power and might. b) gravity and kinetic friction. c) gravity and work.
d) gravity and the linear (or spring) force. e) work and the linear (or spring) force.

7. British American Benjamin Thompson (1753–1814)—ennobled as Count Rumford—while employed as
director of the Bavarian arsenal, noticed that in boring cannon—but not causing cannon ennui—that
the boring motion and friction seemed to produce unlimited amounts of heat. He concluded:

a) heat was a substance of which there could only be so much of in any object.
b) that heat was somehow generated by motion and friction. This conclusion eventually led to the

recognition of heat as another form of energy that could be converted from or converted into, e.g.,
mechanical or chemical energy and to the concept of conservation of energy.

c) that heat had no relation to motion and friction and was somehow spontaneously generated by
cannon.

d) that cannon could be the plural of cannon.
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e) that the biergartens in Munich were much better than the taverns in Boston and that Sam Adams,
patriot-founding-father notwithstanding, could have learnt a thing or two about brewing beer.

8. “Let’s play Jeopardy! For $100, the answer is: ∆E = Wnonconservative.”

What is the , Alex?

a) work-energy theorem b) work-kinetic-energy theorem c) potential-energy-work formula
d) work-potential-energy theorem e) kinetic energy formula

9. Mechanical energy is the sum of kinetic energy and potential energy. It is a conserved quantity:

a) always.

b) whenever it has both kinetic and potential energy components.

c) if all the forces that do net work are NONCONSERVATIVE.

d) if all the forces that do net work are CONSERVATIVE.

e) whenever it is positive.

10. Frequently, in conservation-of-mechanical energy problems, one encounters non-conservative forces that
guide the motion and cause accelerations. Mechanical energy is conserved because these
do work because they are always to the direction of motion. Actually, conservative forces
can also be when they are .

a) work-doing constraint forces; parallel b) work-doing constraint forces; perpendicular
c) workless constraint forces; parallel d) workless constraint forces; perpendicular
e) worthless unconstrained forces; peculiar

11. A brick has mass 1 kg. A dog (from a joke that I’ll tell you someday) drops the brick (which it was
holding in its mouth or, one might say, with its jowl) 1 m. What is the kinetic energy of the brick just
before it hits the ground? HINT: The calculator is superfluous.

a) 9.8 watts. b) 9.8 gems. c) 9.8 newtons. d) 9.8 jowls. e) 9.8 joules.

12. A girl on a swing oscillates between being 2 m off the ground where she is and 1 m off the
ground where her speed is a . No nonconservative forces do work. What is her maximum
speed?

a) moving; minimum; 0 m/s. b) at rest; minimum; 0 m/s. c) at rest; maximum; 1 m/s.
d) at rest; maximum; 2.4 m/s. e) at rest; maximum; 4.4 m/s.

13. An object is trapped and moving around in some kind of potential well: it’s a bound particle we’d say.
What are those special points called where the kinetic energy of the particle momentarily goes to zero?
Why are they so called?

a) Turning points—so called because when a particle reaches one, it must come to rest and reverse
direction.

b) Stable static equilibrium points—so called because when a particle reaches one it stops.

c) Stable static equilibrium points—so called because when a particle reaches one it accelerates.

d) Unstable static equilibrium points—so called because when a particle reaches one it accelerates.

e) Turning points—so called because of the film “The Turning Point” starring Shirley Maclaine, Anne
Bancroft, and Mikhail Barishnykov.

14. If one makes a sufficiently small displacement from stable static equilibrium of almost any system a
with smooth potential energy function and then lets the system evolve in isolation, the system will
approximate a/an:

a) simple harmonic oscillator. b) anharmonic oscillator. c) traveling wave.
d) unstable equilibrium system. e) a vector field.

15. Why can’t a practical balance scale ever be in perfect unstable static equilibrium when balancing?

a) Nothing is perfect.

b) Everything is perfect.

c) There is always some frictional force that makes the balance position, however, slightly metastable
or the scale never really balances: the perturbations just grow so slowly that one can make a
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measurement before they become obvious. Of course, the less the stabilizing friction and the less
the perturbations, the MORE exactly a mass can be determined.

d) There is always some frictional force that makes the balance position, however, slightly metastable
or the scale never really balances: the perturbations just grow so slowly that one can make a
measurement before they become obvious. Of course, the less the stabilizing friction and the less
the perturbations, the LESS exactly a mass can be determined.

e) No one wants to.

16. Work per unit time or energy transformed per unit time is:

a) power. b) might. c) oomph. d) strength. e) pay.

17. If you could capture it all for useful work, the energy sunlight delivers to a square meter of ground
would run one or two ordinary incandescent light bulbs. The power delivered by the Sun to a square
meter of ground on average is to order or magnitude:

a) 1 W. b) 10 W. c) 100 W. d) 106 W. e) 1 MW.

18. A 50 kg boy runs up a flight of stairs of 5 m in height in 5 s at a constant rate. His power output just
to work against gravity is:

a) 50 W. b) 490 W. c) 980 W. d) 106 W. e) 1 MW.

19. A 100 kg mountain climber climbs 4000 m in 10 hours. What is his power output going into gravitational
potential energy? What is his total power output?

a) 3.92 × 106 W and 3.92 × 106 W.
b) The power going into gravitational potential energy is 109 W. His total power output cannot be

exactly calculated since a lot of power must go into waste heat due to frictional forces and into the
body heat which is lost to the environment. All one can easily say is that 109 W is a LOWER

BOUND on the total power output.

c) The power going into gravitational potential energy is 3.92× 106 W. His total power output cannot
be exactly calculated since a lot of power must go into waste heat due to frictional forces and into
the body heat which is lost to the environment. All one can easily say is that 3.92 × 106 W is a
LOWER BOUND on the total power output.

d) The power going into gravitational potential energy is 3.92× 106 W. His total power output cannot
be exactly calculated since a lot of power must go into waste heat due to frictional forces and into
the body heat which is lost to the environment. All one can easily say is that 3.92 × 106 W is an
UPPER BOUND on the total power output.

e) The power going into gravitational potential energy is 109 W. His total power output cannot be
exactly calculated since a lot of power must go into waste heat due to frictional forces and and into
the body heat which is lost to the environment. All one can easily say is that 109 W is an UPPER

BOUND on the total power output.

20. We will now prove the work-kinetic energy theorem. Don’t panic.

a) Write down the work-kinetic-energy theorem.

b) Separate the work done W in the work-kinetic-energy theorem in to that done by conservative
forces and that done by non-conservative forces. Nothing forbids us from doing this.

c) Use the general formula for the potential energy of conservative forces to eliminate the work done
by the conservative forces.

d) Show that the sum of the changes in the kinetic and potential energies equals the work done by the
non-conservative forces. This is the work-energy theorem.

e) Another form of the work-energy theorem formula is obtained by defining mechanical energy by

E = KE + PE .

Write it down.

f) If the non-conservative forces do no work—but they may be present as workless constraint forces—
what is conserved? What is not necessarily conserved in this case.
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21. You drop a 2.0 kg spanner from rest to a friend standing on the ground which 10 m below the drop
height. She will catch the spanner 1.5 m above the ground. Neglect air drag.

a) What’s the work done by gravity in the drop?

b) What’s the change in gravitational potential energy in the drop?

c) Using an energy conservation calculation find the speed of the spanner as it reaches your friend’s
hands.

22. This gentleman of fortune Daniel Goodwin in 1981 scaled the Sears Building in Chicago using suction
cups and metal clips. The building is 443 m high. Let’s guess he had a mass of 70 kg. Let us assume
Dan is an IDEAL climber: i.e., all the body chemical energy he puts out goes into his own macroscopic
kinetic energy or his own gravitational potential energy and into no other forms ever even eventually.

a) How much body chemical energy did Dan expend getting to the top? He started from rest and
ended at rest?

b) If he’d just climbed the stairs, how much body chemical energy again starting and ending at rest.

c) Why did he probably use a lot more body chemical energy than an ideal climber?

23. The Steel Dragon in Mie, Japan is one of the world’s fastest and tallest roller coasters.

a) Assuming only gravity does work on a coaster find the formula for its speed v at any height y given
that its initial speed and height were, respectively, v0 and y0. NOTE: We actually have to assume
that the coaster is a point mass. Otherwise, we would have to worry about the kinetic energy of
its internal parts: i.e., its spinning wheels. Note we are neglecting friction and air drag.

b) What does the normal force do in the roller coaster system? NOTE: We will assume that the
tension in the chain or cable that pulls the coaster is negligible, but this might not be the actual
case.

c) Say that v0 = 3.0 m/s and y0 = 93.5 m. What is the speed when y = 0 m?

d) Why can’t we calculate the time it takes for the coaster to go from height y0 to y in the part (c)
case?

e) What is the COMPONENT of the force of gravity along the track direction and what is the
ACCELERATION if only gravity is acting along the track direction? Take the angle of the track
to the horizontal to be θ.

f) Assuming for the part (c) question that the motion was all downhill and the displacement in the
horizontal direction was about the same as in the vertical direction, estimate the travel time between
the two locations.

24. A boll weevil of mass m is sitting on top of a hemispherical igloo of radius R. An infinitesimal
perturbation starts him sliding down starting from speed ZERO. The igloo is frictionless and there
is no air drag.

a) Sketch a diagram of the system with the boll weevil at a general position on the igloo. Indicate
angle θ and the forces that act on the boll weevil. Note, forces, not force components.

b) Find an explicit formula for the boll weevil’s speed on the igloo as a function of angle θ on the igloo
measured from the vertical using conservation of mechanical energy. SHOW how you found the
formula.

c) At some height (measured from the ground) the boll weevil flies off the igloo. Find an explicit
formulae for angle and the height at which the boll weevil flies off the igloo. SHOW how you
found the formulae. HINT: This is purely a force analysis problem. Consider the normal force
on the boll weevil and note that the radial (component of) acceleration is instantaneously given by
the a = −v2/r just as for uniform circular motion even when v is not constant provided that r is
constant. Recall v is just the tangential speed in the radial acceleration formula.

25. Dingo the daredevil dog (who has mass m), starting from REST, slides down a frictionless track from
an initial height y0. The track becomes level at y = 0, then goes into a circular loop of radius R, and
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then goes level at y = 0 again. Dingo is actually a particle dog.

a) What is Dingo’s speed at any height y assuming he stays on the track? Give the speed as function
of y, y0, g, and, if necessary, m.

b) Find a general formula for the normal force on Dingo when he is on the loop as a function of the
angle θ between a general radial vector and the radial vector pointing to the top of the loop. Assume
that the direction toward the center is the positive direction. The only variables in the formula
should be y0, R, m, g, and θ. Simplify as much as possible and take radially inward as positive.
HINT: Note that the magnitude of the radial (component of) acceleration is instantaneously given
by a = v2/r just as for uniform circular motion even when v is not constant provided that r is
constant. Recall v is just the tangential speed in this expression and the direction of the radial
acceleration is toward the center.

c) For what θ is the normal force formula smallest? What is the normal force at this angle?

d) What is the mathematical condition—sufficient, not just necessary—needed so that the normal
force formula never specifies an attractive normal force (i.e., a force attracting Dingo to the track)
anywhere on the loop? Explain why there is this condition. What happens to Dingo if the formula
did specify an attractive normal force?

e) Say y0 = 50 m and the loop radius R = 10 m. Does Dingo stay on the loop? (A demonstration is
needed, not just a yes or no answer. But it’s not a long demonstration.)
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Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither
intended to be complete nor completely explicit. There are fewer symbols than variables, and so some
symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

c = 2.99792458× 108 m/s ≈ 2.998 × 108 m/s ≈ 3 × 108 m/s ≈ 1 lyr/yr ≈ 1 ft/ns exact by definition

e = 1.602176487(40)× 10−19 C

G = 6.67428(67)× 10−11 Nm2/kg2 (2006, CODATA)

g = 9.8 m/s2 fiducial value

k =
1

4πε0
= 8.987551787 . . .× 109 ≈ 8.99 × 109 ≈ 1010 Nm2/C2exact by definition

kBoltzmann = 1.3806504(24)× 10−23 J/K = 0.8617343(15)× 10−4 eV/K ≈ 10−4 eV/K

me = 9.10938215(45)× 10−31 kg = 0.510998910(13)MeV

mp = 1.672621637(83)× 10−27 kg = 938.272013(23), MeV

ε0 =
1

µ0c2
= 8.8541878176 . . .× 10−12 C2/(Nm2) ≈ 10−11 vacuum permittivity (exact by definition)

µ0 = 4π × 10−7 N/A2 exact by definition

2 Geometrical Formulae

Ccir = 2πr Acir = πr2 Asph = 4πr2 Vsph =
4

3
πr3

Ωsphere = 4π dΩ = sin θ dθ dφ

3 Trigonometry Formulae

x

r
= cos θ

y

r
= sin θ

y

x
= tan θ =

sin θ

cos θ
cos2 θ + sin2 θ = 1

csc θ =
1

sin θ
sec θ =

1

cos θ
cot θ =

1

tan θ

c2 = a2 + b2 c =
√

a2 + b2 − 2ab cos θc
sin θa

a
=

sin θb

b
=

sin θc

c

f(θ) = f(θ + 360◦)

sin(θ + 180◦) = − sin(θ) cos(θ + 180◦) = − cos(θ) tan(θ + 180◦) = tan(θ)

sin(−θ) = − sin(θ) cos(−θ) = cos(θ) tan(−θ) = − tan(θ)
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sin(θ + 90◦) = cos(θ) cos(θ + 90◦) = − sin(θ) tan(θ + 90◦) = − tan(θ)

sin(180◦ − θ) = sin(θ) cos(180◦ − θ) = − cos(θ) tan(180◦ − θ) = − tan(θ)

sin(90◦ − θ) = cos(θ) cos(90◦ − θ) = sin(θ) tan(90◦ − θ) =
1

tan(θ)
= cot(θ)

sin(a + b) = sin(a) cos(b) + cos(a) sin(b) cos(a + b) = cos(a) cos(b) − sin(a) sin(b)

sin(2a) = 2 sin(a) cos(a) cos(2a) = cos2(a) − sin2(a)

sin(a) sin(b) =
1

2
[cos(a − b) − cos(a + b)] cos(a) cos(b) =

1

2
[cos(a − b) + cos(a + b)]

sin(a) cos(b) =
1

2
[sin(a − b) + sin(a + b)]

sin2 θ =
1

2
[1 − cos(2θ)] cos2 θ =

1

2
[1 + cos(2θ)] sin(a) cos(a) =

1

2
sin(2a)

cos(x) − cos(y) = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

cos(x) + cos(y) = 2 cos

(

x + y

2

)

cos

(

x − y

2

)

sin(x) + sin(y) = 2 sin

(

x + y

2

)

cos

(

x − y

2

)

4 Approximation Formulae

∆f

∆x
≈ df

dx

1

1 − x
≈ 1 + x : (x << 1)

sin θ ≈ θ tan θ ≈ θ cos θ ≈ 1 − 1

2
θ2 all for θ << 1

5 Quadratic Formula

If 0 = ax2 + bx + c , then x =
−b ±

√
b2 − 4ac

2a
= − b

2a
±

√

(

b

2a

)2

− c

a
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6 Vector Formulae

a = |~a| =
√

a2
x + a2

y θ = tan−1

(

ay

ax

)

+ π? ~a +~b = (ax + bx, ay + by)

a = |~a| =
√

a2
x + a2

y + a2
z φ = tan−1

(

ay

ax

)

+ π? θ = cos−1
(az

a

)

~a +~b = (ax + bx, ay + by, az + bz)

~a ·~b = ab cos θ = axbx + ayby + azbz

~c = ~a ×~b = ab sin(θ)ĉ = (aybz − byaz, azbx − bzax, axby − bxay)

7 Differentiation and Integration Formulae

d(xp)

dx
= pxp−1 except for p = 0;

d(x0)

dx
= 0

d(ln |x|)
dx

=
1

x

Taylor’s series f(x) =

∞
∑

n=0

(x − x0)
n

n!
f (n)(x0)

= f(x0) + (x − x0)f
(1)(x0) +

(x − x0)
2

2!
f (2)(x0) +

(x − x0)
3

3!
f (3)(x0) + . . .

∫ b

a

f(x) dx = F (x)|ba = F (b) − F (a) where
dF (x)

dx
= f(x)

∫

xn dx =
xn+1

n + 1
except for n = −1;

∫

1

x
dx = ln |x|

8 One-Dimensional Kinematics

vavg =
∆x

∆t
v =

dx

dt
aavg =

∆v

∆t
a =

dv

dt
=

d2x

dt2

v = at + v0 x =
1

2
at2 + v0t + x0 v2 = v2

0 + 2a(x − x0)

x =
1

2
(v0 + v)t + x0 x = −1

2
at2 + vt + x0 g = 9.8 m/s2
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xrel = x2 − x1 vrel = v2 − v1 arel = a2 − a1

x′ = x − vframet v′ = v − vframe a′ = a

9 Two- and Three-Dimensional Kinematics: General

~vavg =
∆~r

∆t
~v =

d~r

dt
~aavg =

∆~v

∆t
~a =

d~v

dt
=

d2~r

dt2

10 Projectile Motion

x = vx,0t y = −1

2
gt2 + vy,0t + y0 vx,0 = v0 cos θ vy,0 = v0 sin θ

t =
x

vx,0
=

x

v0 cos θ
y = y0 + x tan θ − x2g

2v2
0 cos2 θ

xfor y max =
v2
0 sin θ cos θ

g
ymax = y0 +

v2
0 sin2 θ

2g

x(y = y0) =
2v2

0 sin θ cos θ

g
=

v2
0 sin(2θ)

g
θfor max =

π

4
xmax(y = y0) =

v2
0

g

x(θ = 0) = ±v0

√

2(y0 − y)

g
t(θ = 0) =

√

2(y0 − y)

g

11 Relative Motion

~r = ~r2 − ~r1 ~v = ~v2 − ~v1 ~a = ~a2 − ~a1

12 Polar Coordinate Motion and Uniform Circular Motion

ω =
dθ

dt
α =

dω

dt
=

d2θ

dt2

~r = rr̂ ~v =
d~r

dt
=

dr

dt
r̂ + rωθ̂ ~a =

d2~r

dt2
=

(

d2r

dt2
− rω2

)

r̂ +

(

rα + 2
dr

dt
ω

)

θ̂

~v = rωθ̂ v = rω atan = rα

~acentripetal = −v2

r
r̂ = −rω2r̂ acentripetal =

v2

r
= rω2 = vω
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13 Very Basic Newtonian Physics

~rcm =

∑

i mi~ri

mtotal
=

∑

sub msub~rcm sub

mtotal
~vcm =

∑

i mi~vi

mtotal
~acm =

∑

i mi~ai

mtotal

~rcm =

∫

V
ρ(~r )~r dV

mtotal

~Fnet = m~a ~F21 = −~F12 Fg = mg g = 9.8 m/s2

~Fnormal = −~Fapplied Flinear = −kx

fnormal =
T

r
T = T0 − Fparallel(s) T = T0

Ff static = min(Fapplied, Ff static max) Ff static max = µstaticFN Ff kinetic = µkineticFN

vtangential = rω = r
dθ

dt
atangential = rα = r

dω

dt
= r

d2θ

dt2

~acentripetal = −v2

r
r̂ ~Fcentripetal = −m

v2

r
r̂

Fdrag,lin = bv vT =
mg

b
τ =

vT

g
=

m

b
v = vT(1 − e−t/τ )

Fdrag,quad = bv2 =
1

2
CρAv2 vT =

√

mg

b

14 Energy and Work

dW = ~F · d~s W =

∫

~F · d~s KE =
1

2
mv2 Emechanical = KE + PE

Pavg =
∆W

∆t
P =

dW

dt
P = ~F · ~v

∆KE = Wnet ∆PEof a conservative force = −Wby a conservative force ∆E = Wnonconservative

F = −dPE

dx
~F = −∇PE PE =

1

2
kx2 PE = mgy


