Physics 210
NAME:
Homework 1: Measurement One or two full answer questions will be marked. There will also be a mark for completeness. They are due usually the day after the chapter they are for is finished. Solutions will be posted soon thereafter. The solutions are intended to be (but not necessarily are) super-perfect and often go beyond a fully correct answer.

Answer Table

1.	a	b	c	d	e
2.	O	O	O	O	O
3.	O	O	O	O	O
4.	O	O	O	O	O
5.	O	O	O	O	
6.	O	O	O	O	O
7.	O	O	O	O	O
8.	O	O	O	O	O
9.	O	O	O	O	O
10.	O	O	O	O	O
11.	O	O	O	O	O
12.	O	O	O	O	O
13.	O	O	O	O	O
14.	O	O	O	O	O
15.	O	O	O	O	O
16.	O	O	O	O	O
17.	O	O	O	O	O
18.	O	O	O	O	O
19.	O	O	O	O	O
20.	O	O	O	O	O
21.	O	O	O	O	O
22.	O	O	O	O	O
23.	O	O	O	O	O
24.	O	O	O	O	O
25.	O	O	O	O	O
26.	O	O	O	O	O
27.	O	O	O	O	O
28.	O	O	O	O	O
29.	O	O	O	O	O
30.	O	O	O	O	O

Name:

	a	b	c	d	e
31.	O	O	O	O	O
32.	O	O	O	O	O
33.	O	O	O	O	O
34.	O	O	O	O	O
35.	O	O	O	O	O
36.	O	O	O	O	O
37.	O	O	O	O	O
38.	O	O	O	O	O
39.	O	O	O	O	O
40.	O	O	O	O	O
41.	O	O	O	O	O
42.	O	O	O	O	O
43.	O	O	O	O	O
44.	O	O	O	O	O
45.	O	O	O	O	O
46.	O	O	O	O	O
47.	O	O	O	O	O
48.	O	O	O	O	O
49.	O	O	O	O	O
50.	O	O	O	O	O
51.	O	O	O	O	O
52.	O	O	O	O	O
53.	O	O	O	O	O
54.	O	O	O	O	O
55.	O	O	O	O	O
56.	O	O	O	O	O
57.	O	O	O	O	O
58.	O	O	O	O	O
59.	O	O	O	O	O
60.	O	O	O	O	O

001 qmult 00192115 easy memory: clearly in physics
Extra keywords: Not a serious question.

1. In physics jargon, the word "clearly" means:
a) clearly.
b) unclearly.
c) after 4 pages of algebra.
d) wrongly.
e) all of the above.

SUGGESTED ANSWER: (e) It seems to me that this is the right answer. When someone says
"clearly" in a physics argument, one needs to reflect on their character.

Wrong answers:

a) Only sometimes.
b) Frequently.
c) Pretty often.
d) Pretty often too.

Redaction: Jeffery, 2001jan01

001 qmult 00194115 easy memory: must be in physics
Extra keywords: Not a serious question.
2. In physics jargon, the phrase "must be" means:
a) is.
b) just accept it that.
c) not necessarily so.
d) can't be.
e) all of the above.

SUGGESTED ANSWER: (e) It seems to me that this is the right answer. When someone says "must be" in a physics argument, what they mean depends on their stage of desperation.

Wrong answers:

a) Only sometimes.
b) Frequently.
c) Pretty often.
d) Pretty often too.

Redaction: Jeffery, 2001jan01

001 qmult 00300142 easy deducto-memory: scientific notation defined
Extra keywords: physci
3. "Let's play Jeopardy! For $\$ 100$, the answer is: It is a notation in which one expresses a number by a coefficient decimal number multiplied explicitly by 10 to the appropriate power. If the coefficient is in the range 1 to 10 , but not including 10, the notation is called normalized."

What is \qquad Alex?
a) British notation
b) scientific notation
c) metric notation
d) tensy notation
e) Irish notation

SUGGESTED ANSWER: (b)

Wrong answers:

e) Tis yourself that does not know that scientific notation was invented by St. Patrick who, alas, was actually British.

Redaction: Jeffery, 2001jan01
001 qmult 00310134 easy math: hundred million billion in sci. not.
Extra keywords: physci
4. Write a hundred million billion miles in scientific notation.
a) $10^{2} \mathrm{mi}$.
b) $10^{6} \mathrm{mi}$.
c) $10^{9} \mathrm{mi}$.
d) $10^{17} \mathrm{mi}$.
e) $10^{-9} \mathrm{mi}$.

SUGGESTED ANSWER: (d)

As Andy Rooney says (or used to say), don't you just hate it when newspapers use expressions like hundred million billion miles-as if you were just going there to drop the kids off for soccer. We all know scientific notation or should nowadays.

Behold:

$$
10^{2} \times 10^{6} \times 10^{9}=10^{17}
$$

Wrong answers:

e) Seems unlikely.

Redaction: Jeffery, 2001jan01
001 qmult 00320131 easy math: show in scientific notation
5. Express 4011 and 0.052 in normalized scientific notation form.
a) 4.011×10^{3} and 5.2×10^{-2}.
b) 40.11×10^{3} and $52 . \times 10^{-2}$.
c) 40.11×10^{2} and $52 . \times 10^{-3}$.
d) 4.011×10^{-2} and 5.2×10^{3}.
e) 4011 and 0.052 .

SUGGESTED ANSWER: (a)

Wrong answers:

c) The numbers are, of course, equal to the numbers in the problem and are in scientific notation, but not the most conventional form as most people would say.
d) The same remark as for answer (c) applies.

Redaction: Jeffery, 2008jan01
001 qmult 00410145 easy deducto-memory: units needed
Extra keywords: physci
6. "Let's play Jeopardy! For $\$ 100$, the answer is: In any measurements of quantities, they are conventionally agreed upon standard things."
What are \qquad , Alex?
a) unities
b) dualities
c) duplicities
d) quantons
e) units

SUGGESTED ANSWER: (e)

Wrong answers:

d) I think this is a pretty good alternative to units.

Redaction: Jeffery, 2001jan01
001 qmult 00420113 easy memory: SI or metric units
Extra keywords: physci
7. The modern standard set of units for science, most engineering, and much of everyday life (except in the 2nd largest country in North America) is the International System of Units (Système International d'Unités or SI) which is often called the:
a) British system.
b) Mesopotamian system.
c) metric system.
d) Paraguayan system.
e) rational system.

SUGGESTED ANSWER: (c)

Wrong answers:

a) More or less exactly wrong.
b) In timekeeping and angular measurement, we still use a lot of the sexagesimal system of the ancient Mesopotamians.
e) Sounds reasonable.

Redaction: Jeffery, 2001jan01
001 qmult 00422153 easy thinking: US Customary Unit System 1
Extra keywords: the horror, the horror
8. Why is the US Customary Unit system (loosely called the British Unit System) hard to use in calculations in comparison with the metric system?
a) The US Customary Unit system has no unit of mass. Consequently, when you need to use mass, you have to mentally work around the lack of a unit.
b) The US Customary Unit is completely unknown by scientists and engineers, and so, of course, could scarcely be used.
c) The US Customary Unit has units in a host of irregular sizes: 16 ounces to the pound, 8 pints in a gallon, 12 inches to the foot, and 45 inches to the ell (fact!). This makes calculations and conversions tortuous. In particular, it is awkward that cubic units of length (e.g., cubic inches, feet, etc.) are not simply related to standard volume units (e.g., a U.S. gallon is defined as 231 cubic inches). In everyday life the irregularities of the British system don't cause much of a problem and maybe even have mnemonic value. But that hardly helps people who want to send probes to Mars.
d) The complete regularity of the US Customary Unit means that you never know if a number is 10 , 100,1000 , etc., except by context.
e) It's the revenge for Bunker Hill.

SUGGESTED ANSWER: (c)

In late 1999, NASA lost the Mars Climate Orbiter before its mission could begin by crashing it on Mars due to confusion between British and metric units.

Wrong answers:

a) There is a unit of mass: the slug: a slug weighs about 32.2 pounds, and if acted upon by a one pound force will have an acceleration of 1 foot $/ \mathrm{s}^{* *} 2$. But I don't think a slug has ever been acted by any force at all.
d) Actually the ancient Mesopotamians in math and astronomy used a sexagesimal system (base 60), they didn't specify absolute values (no "decimal" point) leaving the absolute size to context often hard to know 4000 years later.
e) Not an answer. However, still having the British system is probably one of the disadvantages of the American Revolution.

Redaction: Jeffery, 2008jan01
001 qmult 00432143 easy deducto-memory: basic quantities
9. Three quantities usually adopted as basic (i.e., not reducible to other kinds of quantities by convention) are:
a) length, area, volume.
b) mass, weight, heft.
c) length, mass, time.
d) time, duration, age.
e) length, mass, density.

SUGGESTED ANSWER: (c)

People should just know that (c) is the right answer. Of course, which quantities are taken as fundamental is to a degree arbitrary. One could take length, density, and time as fundamental and define mass from length and density. But the simple way we think of things suggests length, mass, time as fundamental.

Wrong answers:

a) Area and volume can be formed from length and so arn't usually considered fundamental.
b) heft can mean weight or heaviness or to lift or heave.
e) Density isn't independent of length and mass in the way we usually think of things, and a time-relating quantity is needed.

Redaction: Jeffery, 2001jan01
001 qmult 00442111 easy memory: base units
10. The 7 base units are meter, kilogram (gram would have been more logical), second, ampere,
a) kelvin, mole, and candela. b) calvin, mold, and candeleria.
c) kelvin, mouse, and candace.
d) melvin, moose, and cantrip.
e) kludge, moor, and mountain.

SUGGESTED ANSWER: (a)

Wrong answers:
d) A cantrip is a magical spell.

Redaction: Jeffery, 2008jan01

001 qmult 00450143 easy deducto-memory: MKS
11. MKS stands for:
a) meters, kilometers, centimeters.
b) meters, kilometers, seconds.
c) meters, kilograms, seconds.
d) millimeters, kilometers, seconds.
e) millimeters, kilograms, seconds.

SUGGESTED ANSWER: (c)

Wrong answers:
a) Does this seem likely?

Redaction: Jeffery, 2008jan01
001 qmult 00452153 easy thinking: consistent MKS units
12. If one used ONLY MKS units (i.e., units of meters, kilograms, seconds, coulombs, amperes, kelvins, moles, etc., plus MKS units derived from these) in calculations, then one will get answers in:
a) CGS units only.
b) MKS or CGS units.
c) MKS units only.
d) British units only.
e) any old units.

SUGGESTED ANSWER: (c)

An easy thinking question. All physical quantities can be expressed in the 7 fundamental MKS units plus the MKS units derived from them. Any calculation in pure MKS units can only generate results in pure MKS units.

Wrong answers:

a) Not possible.
b) Still not possible.
d) This is delusional.

Redaction: Jeffery, 2008jan01
001 qmult 00454155 easy thinking: consistent and convenient units
13. In scientific calculations, it is probably best to stick to one complete, consistent set of units (MKS or CGS):
a) always. b) half the time. c) never. d) whenever. e) except when its not convenient. In most specialized studies, there are units convenient for that study either in actual calculations or just in mental conception. Astronomers, for example often use the solar mass $\left(1.9891 \times 10^{30} \mathrm{~kg}\right)$ as a unit for the masses of stars since the Sun is basic standard of reference for stars.

SUGGESTED ANSWER: (e)

Wrong answers:

d) A nonsense answer.

Redaction: Jeffery, 2008jan01
001 qmult 00460111 easy memory: metric kilo and centi
Extra keywords: physci
14. In SI, the prefixes kilo and centi indicate, respectively, multiplication by:
a) 1000 and 0.01 .
b) 0.01 and 1000 .
c) 1000 and 100 .
d) 60 and 0.01 .
e) π and e.

SUGGESTED ANSWER: (a)
Wrong answers:
e) As Lurch would say: "Aaaarh."

Redaction: Jeffery, 2001jan01
15. In conversions, one can just treat units as variables whose values are never specified. One can do algebra with them and cancel them. One also knows a set of equalities relating units, and so can write down factors of unity or conversion factors. For example, $1000 \mathrm{~m}=1 \mathrm{~km}$, and so a factor of unity (or conversion factor) is

$$
1=\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}
$$

This factor would be used to convert an amount in kilometers to meters by:
a) multiplication.
b) division.
c) addition.
d) subtraction.
e) squaring.

SUGGESTED ANSWER: (a)

Wrong answers:

b) An amount in meters could be converted to kilometers by division.
e) As Lurch would say: "Aaaarh."

Redaction: Jeffery, 2001jan01

001 qmult 00510141 easy deducto-memory: conversion factor=unity factor
Extra keywords: physci
16. A units conversion factor is sometimes called a factor of:
a) unity.
b) 2 .
c) a few.
d) 10 .
e) fact.

SUGGESTED ANSWER: (a) This isn't a real common expression: at least I seldom use it: I just say conversion factor. But since conversion doesn't change physical size, factor of unity makes sense.

Wrong answers:

b) All too often the size of astronomical uncertainty or error.
c) Same as (b).
d) Same as (b).
e) A nonsense answer.

Redaction: Jeffery, 2001jan01

001 qmult 00520151 easy thinking: meter to centimeters
17. Using compact one-number conversion factors is often trickier than just using explicit factors of unity in doing calculations. But if one has to do repeated conversions, it is convenient to have them. Some are straightforward to find. For example, what is the conversion factor for converting meters TO centimeters?
a) $100 \mathrm{~cm} / \mathrm{m}$.
b) $(1 / 100) \mathrm{cm} / \mathrm{m}$.
c) $(1 / 10) \mathrm{cm} / \mathrm{m}$.
d) $10 \mathrm{~cm} / \mathrm{m}$.
e) $10 \mathrm{~m} / \mathrm{cm}$.

SUGGESTED ANSWER: (a)

Wrong answers:
b) Exactly wrong.

Redaction: Jeffery, 2008jan01
001 qmult 00530231 moderate memory: m/s to km/h
18. Using compact one-number conversion factors is often trickier than rather than just using explicit factors of unity in doing calculations. But if one has to do repeated conversions, it is convenient to have them. Some are straightforward to find and others a little less so. For example, what is the conversion factor for converting meters per second TO kilometers per hour? HINT: Start with the $1 \mathrm{~m} / \mathrm{s}=1 \mathrm{~m} / \mathrm{s} \times 1 \times 1$ and replace the 1's by simple factors of unity and find a factor of unity for required conversion and then the compact one-number conversion factor.
a) $3.6(\mathrm{~km} / \mathrm{h}) /(\mathrm{m} / \mathrm{s})$.
b) $1 / 3.6(\mathrm{~km} / \mathrm{h}) /(\mathrm{m} / \mathrm{s})$. c) $1000(\mathrm{~km} / \mathrm{h}) /(\mathrm{m} / \mathrm{s})$.
d) $3600(\mathrm{~km} / \mathrm{h}) /(\mathrm{m} / \mathrm{s})$.
e) $1000 / 3600(\mathrm{~km} / \mathrm{h}) /(\mathrm{m} / \mathrm{s})$.

Well

$$
1 \mathrm{~m} / \mathrm{s}=1 \mathrm{~m} / \mathrm{s} \times 1 \times 1=1 \mathrm{~m} / \mathrm{s} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=3.6 \mathrm{~km} / \mathrm{h}
$$

Dividing both sides by $1 \mathrm{~m} / \mathrm{s}$, we find the factor of unity for the conversion and the one-number conversion factor:

$$
1=\frac{3.6 \mathrm{~km} / \mathrm{h}}{1 \mathrm{~m} / \mathrm{s}}=3.6(\mathrm{~km} / \mathrm{h}) /(\mathrm{m} / \mathrm{s}) .
$$

Wrong answers:

b) This coverts from km / h to m / s.
e) This is the same as answer (b) and equally wrong.

Redaction: Jeffery, 2008jan01
001 qmult 00540141 easy deducto-memory: kilogram to grams
Extra keywords: physci
19. A kilogram is:
a) 1000 grams.
b) 1×10^{-3} grams.
c) 3.1416 grams.
d) 2 grams.
e) 0 grams.

SUGGESTED ANSWER: (a)

Wrong answers:

b) kilograms just sound bigger than grams. Even before this course, everyone should know this is wrong.
c) Not π grams.
d) C'mon, metric is a decimal system.
e) A nonsense answer.

Redaction: Jeffery, 2001jan01
001 qmult 00550144 easy deducto-memory: conversion of an inch to cm
Extra keywords: physci
20. One inch is:
a) 1 m .
b) 1 km .
c) 1 cm .
d) 2.54 cm .
e) 1 ft .

SUGGESTED ANSWER: (d)

You can deduce the answer.
In modern times, the yard is defined to be exactly 0.9144 m . Thus,

$$
1 \text { inch }=\frac{91.44 \mathrm{~cm}}{36}=\left(2.5+\frac{1.44}{36}\right) \mathrm{cm}=2.54 \mathrm{~cm} \quad \text { exactly. }
$$

Wrong answers:

a) A meter is about a yard=36 inches.
b) A kilometer is about 0.6215 miles and a mile is 1.609 kilometers.
c) Doesn't seem likely given generally offset between SI and British units.
e) Oh c'mon.

Redaction: Jeffery, 2001jan01
001 qmult 00560143 easy deducto-memory: conversion mile to km
21. 1 mile is nearly exactly:
a) 1 m .
b) 1 km .
c) 1.609 km .
d) 2.54 cm .
e) 1 ft .

SUGGESTED ANSWER: (c)

You can deduce the answer. How likely is it that 1 mi would nearly exactly 1 km ?
Actually, the modern mile is defined to be exactly 1.609344 km (http://en.wikipedia.org/wiki/Mile).

Wrong answers:

a) A meter is about a yard=36 inches.
b) Doesn't seem likely given generally offset between SI and British units.
d) Not too likely
e) Oh c'mon.

Redaction: Jeffery, 2001jan01
001 qmult 00570244 moderate deducto-memory: $10 \mathrm{~m} / \mathrm{s}$ to mph
Extra keywords: physci
22. A human (a very speedy human) can run $10 \mathrm{~m} / \mathrm{s}$. What is this speed in miles per hour (mi/h)? HINT: You do not need to do any explicit calculation (although that will work too). Just think about everyday reality. Can you outrun a car? Yes/no/maybe?
a) $100 \mathrm{mi} / \mathrm{h}$.
b) $1 \mathrm{mi} / \mathrm{h}$.
c) $11.2 \mathrm{~km} / \mathrm{s}$.
d) $22.37 \mathrm{mi} / \mathrm{h}$.
e) 22.37 miles.

SUGGESTED ANSWER: (d)

One should be able to deduce the only reasonable answer. But if one wants to do the calculation, then behold:

$$
10 \mathrm{~m} / \mathrm{s} \times\left(\frac{1 \mathrm{mi}}{1609 \mathrm{~m}}\right) \times\left(\frac{3600 \mathrm{~s}}{1 \mathrm{~h}}\right)=22.37 \mathrm{mi} / \mathrm{h} .
$$

Fortran-95 Code

> print*
speed=10.*(1./1609.)*(3600./1.)
print*,'speed in mi/h'
print*, speed
$!\quad 22.374146$

Wrong answers:

a) Not even Donovan Bailey. (A long ago Canadian sprint hero. Not the one who used steroids.)
b) Your kid sibling could do this.
c) Wrong units. Also this is the escape speed from the surface of the Earth (Fr-454). Humans arn't constantly just about launching themselves into orbit.
e) Wrong units.

Redaction: Jeffery, 2001jan01
001 qmult 00580134 easy math: seconds in a day
Extra keywords: physci
23. Exactly how many seconds are there in a day? How many seconds are there in a day to order of magnitude? HINT: "To order of magnitude" means that the number is rounded off to the nearest power of 10 . There is no universal rule about the dividing line between rounding down and rounding up. However, using $\sqrt{10} \approx 3.162$ is a reasonable choice. Thus, the prefix number in normalized scientific notation is rounded down to 1 if it is less than $\sqrt{10}$, rounded up to 10 if it is larger than $\sqrt{10}$, and rounded to make an even power of 10 if it is exactly $\sqrt{10}$. For example, 2.2 rounds off to $10^{0}=1,991$ rounds off to 10^{3}, and $\sqrt{10000}=\sqrt{10} \times 10^{2}$ rounds off to 10^{2}.
a) 86400 s and $10^{4} \mathrm{~s}$.
b) 1440 s and $10^{4} \mathrm{~s}$.
c) 1440 s and $10^{5} \mathrm{~s}$.
d) 86400 s and $10^{5} \mathrm{~s}$.
e) $\pi \times 10^{7} \mathrm{~s}$.

SUGGESTED ANSWER: (d)

Wrong answers:
e) This curiously enough is the number of seconds in a year (Julian or tropical) to better than 0.5% accuracy. This is a simple coincidence, but its a useful mnemonic.
Redaction: Jeffery, 2001jan01
001 qmult 00582134 easy math: convert hundred million billion miles to km
24. CONVERT a hundred million billion miles into kilometers.
a) $1.6 \times 10^{2} \mathrm{~km}$.
b) $1.6 \times 10^{6} \mathrm{~km}$.
c) $1.6 \times 10^{9} \mathrm{~km}$.
d) $1.6 \times 10^{17} \mathrm{~km}$.
e) $1.6 \times 10^{-9} \mathrm{~km}$.

SUGGESTED ANSWER: (d) As Andy Rooney says (or used to say), don't you just hate it when newspapers quote numbers as hundred million billion miles. We all know scientific notation or should nowadays. $10^{2} \times 10^{6} \times 10^{9}=10^{17}$. A kilometer is about 0.6215 miles and a mile is about 1.609 kilometers.

Wrong answers:
e) Seems unlikely.

Redaction: Jeffery, 2001jan01
001 qmult 00710133 easy math: sig.fig. multiplication
25. Multiply experimental values 3.27 and 9.9 , and give the answer to correct significant figures.
a) 30 .
b) 34 .
c) 32 .
d) 32.3 .
e) 32.4 .

SUGGESTED ANSWER: (c)

Behold:

$$
3.27 \times 9.9=32.373
$$

exactly, but rounded off to significant figures one has 32 .
Fortran-95 Code
print*
$\mathrm{x}=3.27 \mathrm{~d} 0$
$\mathrm{y}=9.9 \mathrm{~d} 0$
print*,'x*y=',x*y !
32.3730000000000

Wrong answers:
b) This isn't even correctly rounded off.
d) This isn't even correctly rounded off.

Redaction: Jeffery, 2001jan01
001 qmult 00720134 easy math: sci. not. and sig. fig.
26. Add and multiply 3.01×10^{2} and 1.1×10^{-1} rounding off to significant figures.
a) 3.0111×10^{2} and 3.311×10^{1}.
b) 3.01×10^{2} and 3.311×10^{1}.
c) 3.0111×10^{2} and 3.3×10^{1}.
d) 3.01×10^{2} and 3.3×10^{1}.
e) 3.0×10^{2} and $3 . \times 10^{1}$.

SUGGESTED ANSWER: (d)
Behold:

$$
3.01 \times 10^{2}+1.1 \times 10^{-1}=301+0.11=301.11 \quad \text { and } \quad 3.01 \times 10^{2} \times 1.1 \times 10^{-1}=33.11
$$

exactly, but rounded off to significant figures one has 3.01×10^{2} and 3.3×10^{1}.
Fortran-95 Code

```
            print*
```

 x1=3.01d2
 \(\mathrm{x} 2=1.1 \mathrm{~d}-1\)
 sum=x1+x2
 pro=x1*x2
 print*,sum,pro
 \(!301.110000000000 \quad 33.1100000000000\)

Wrong answers:

a) Too many figures for both values.
b) Too many figures for the product.
c) too many figures for the sum.
e) Too few figures in both cases. Significant figures have been dropped. You have lost away information.

Redaction: Jeffery, 2008jan01

001 qfull 00510130 easy math: acre-foot conversion
Extra keywords: an exercise in conversion only: there is no useful purpose
27. American hydraulic engineers often use acre-feet to measure volume of water. An acre-foot is the amount of water that will cover an acre of flat land to 1 foot.
a) Say 3.00 in of rain fell on a plain of $30.0 \mathrm{~km}^{2}$. How many acre-feet of water fell? Note 1 square mile equals 640 acres and $1 \mathrm{mi}=1.609344 \mathrm{~km}$ exactly by the mile definition. HINTS: First, find the volume in the hybrid units of inch- km^{2} and then use a separate factor of unity for each unit conversion: divide and conquer.
b) Now do a perhaps more useful calculation. Find the conversion factor from acre-feet to cubic meters. Note that 1 in $=2.54 \mathrm{~cm}$ exactly by the modern inch definition.

SUGGESTED ANSWER:

a) Behold:

$$
\begin{aligned}
3.0 \text { in } \times 30 \mathrm{~km}^{2} & =3.0 \text { in } \times 30 \mathrm{~km}^{2} \times\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right) \times\left(\frac{1 \mathrm{mi}}{1.609344 \mathrm{~km}}\right)^{2} \times\left(\frac{640 \mathrm{acres}}{1 \mathrm{mi}^{2}}\right) \\
& =1853 \text { acre ft }
\end{aligned}
$$

b) Behold:

$$
\begin{aligned}
1 \text { acre ft } & =1 \text { acre } \mathrm{ft} \times\left(\frac{1 \mathrm{mi}^{2}}{640 \mathrm{acre}}\right)\left(\frac{1.609344 \mathrm{~km}}{1 \mathrm{mi}}\right)^{2}\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)^{2}\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)\left(\frac{2.540 \mathrm{~cm}}{1 \mathrm{in}}\right)\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) \\
& =1233.5 \mathrm{~m}^{3}
\end{aligned}
$$

Thus the conversion factor is

$$
1233.5 \mathrm{~m}^{3} /(\text { acreft })
$$

Wikipedia gives $1233.5 \mathrm{~m}^{3} /$ (acre ft), and so Wik and I agree at last.

```
Fortran-95 Code
    print*
    volume=3.d0*30.d0*(1.d0/12.d0)*(1.d0/1.609344d0)**2*(640.d0/1.d0)
    conv=(1.d0/640.d0)*(1.609344d0/1.d0)**2*(1000.d0/1.d0)**2
\&
\& \(\quad *(12 . d 0 / 1 . d 0) *(2.54 d 0 / 1 . d 0) *(1 . d 0 / 100 . d 0)\)
print*,'volume in acre-feet, conv'
print*, volume, conv
! 1853.29036100374 1233.4818375475203 ! new, improved way
! 1853.4622079999996 1233.3674731176392 ! old way
```

Redaction: Jeffery, 2001jan01
001 qfull 00520130 easy math: Fermi on lectures and the micro-century
Extra keywords: Fermi, micro-century, microcentury
28. Italian-American physicist Enrico Fermi once noted that a standard 50 minute university lecture was nearly a micro-century. NOTE: A Julian year, which is exactly 365.25 days, is exactly 3.15576×10^{7} seconds. Actually, a convenient mnemonic is that a Julian year is $\pi \times 10^{7} \mathrm{~s}$ which is too small by only 0.5%. It just a coincidence that the Julian year is almost this number of seconds. More exactly a Julian year is $1.0045096 \pi \times 10^{7} \mathrm{~s}$.
a) How long is a micro-century in minutes actually?
b) What is the percentage difference between a standard lecture period and a micro-century.

SUGGESTED ANSWER: HRW-9 gives this factoid.
a) Behold:

$$
\begin{aligned}
1 \text { micro-century } & =1 \text { micro-century } \times\left(\frac{10^{-6} \text { centuries }}{1 \text { micro-century }}\right)\left(\frac{100 \mathrm{Jy}}{1 \text { century }}\right)\left(\frac{3.15576 \times 10^{7} \mathrm{~s}}{1 \mathrm{Jy}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right) \\
& =52.5960 \text { minutes }
\end{aligned}
$$

which is indeed nearly a lecture. As said Marilyn Monroe (1926-1962) on the flight of time in Some Like it Hot: "It makes a girl think."
b) Behold:

$$
\left(\frac{52.596-50}{50}\right) \times 100=5.192 \%=5 \%
$$

```
Fortran-95 Code
    print*
    xmucen=1.d0
    r1=1.d-6
    r2=100.d0
    r3=3.15576d7
    r4=1.d0/60.d0
    xmin=xmucen*r1*r2*r3*r4
    pi1=acos(-1.d0)
    yearmult=r3/(pi1*1.d7)
    diff=(xmin-50.d0)/50.d0
    print*,'yearmult,xmin,diff'
    print*,yearmult,xmin,diff
    ! 1.00450960642336 52.5960000000000 5.191999999999993E-002
```

Redaction: Jeffery, 2001jan01
001 qfull 00530130 easy math: light travel time to Sun
29. The mean Sun-Earth distance, $1.496 \times 10^{13} \mathrm{~cm}$, is a convenient natural unit in astronomy. (All astronomy is CGS, not MKS by the by.) This unit is called the astronomical unit. Given the speed of light is approximately $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$, what is the light travel time from the Sun in minutes?

SUGGESTED ANSWER:

This problem belong to the general class of amount-rate problems. You are given an amount A to be accumulated and a constant rate of accumulation R. The time t to accumulate the amount satisfies

$$
A=R t
$$

and so the time is given by

$$
t=\frac{A}{R} .
$$

In resource economics such accumulation times are called R / P-radios: R being the resource amount (and not rate) and P being the production rate.

In the present case, the mean Sun-Earth distance r is the amount and the speed of light c is the rate. Thus, we have

$$
\frac{r}{c}=\frac{1.5 \times 10^{13}}{3 \times 10^{10}}=0.5 \times 10^{3} \mathrm{~s}=8.3 \mathrm{~min}
$$

to about 2-digit accuracy.
Redaction: Jeffery, 2001jan01

001 qfull 00540130 easy math: pulsar periods in a day
30. Pulsar PSR $1937+21$ has rotation period $1.55780644887275(3) \mathrm{ms}$, where the bracketed number is the uncertainty in the last digit. Note "ms" is millisecond, not microsecond which has symbol $\mu \mathrm{s}$.
a) How many rotations does the pulsar do in 1.0 days keeping track of significant figures?
b) How many rotations does the pulsar do in exactly 1 day (i.e., $1.0000 \ldots$ days) keeping track of significant figures insofar as your calculator allows?

SUGGESTED ANSWER:

a) There are several ways of doing this problem that quickly amount to the same thing. One way is to note that the period is actually a rate: time per rotation. The day is an amount of time
to accumulate. So divide the amount by the rate to get the accumulated number of rotations. One has to make the time units consistent, of course. One finds

$$
\frac{1 \text { day }}{1.55780644887275 \mathrm{~ms}}=\frac{1 \text { day }}{1.55780644887275 \mathrm{~ms}} \times\left(\frac{86400 \mathrm{~s}}{1 \text { day }}\right) \times\left(\frac{1000 \mathrm{~ms}}{1 \mathrm{~s}}\right)=5.5 \times 10^{7} \text { rotations }
$$

b) This is part is the same as part (a), but with more digits carried. Thus,

$$
\left(\frac{1 \text { rotation }}{1.55780644887275 \times 10^{-3} \mathrm{~s}}\right) \times 1.0 \text { day } \times\left(\frac{86400 \mathrm{~s}}{1 \text { day }}\right)=5.5462601 \times 10^{7} \text { rotations } .
$$

Fortran Code

> print*
print*,'A double precision calculation.'
pulsar=1.55780644887275e-3
print*,'pulsar,daysec,daysec/pulsar'
write(*,910) pulsar,daysec,daysec/pulsar

* 0.155780650675297E-02 $0.86400000000000 \mathrm{E}+05 \quad 0.554626005382972 \mathrm{E}+08$

Redaction: Jeffery, 2001jan01
001 qfull 00550230 moderate math: leap seconds
31. The mean solar day is known to increase secularly (i.e., in a long-term way) by about 1.70×10^{-3} seconds per century due mainly to the tidal interaction of the Moon and Sun (Wikipedia: Tidal acceleration). Currently, the mean solar day is about 86400.002 seconds long (Wikipedia: Solar time). HINT: Both parts (a) and (b) are questions of how long at a given rate does a given amount take to accumulate.
a) About how often does a leap second need to be introduced in standard time in order to keep standard and solar time synchronized?
b) If the current rate of increase in the day continues, about how long in years will it take before a leap second is needed daily: i.e., how long until the mean solar day is about 86401.0 seconds?

SUGGESTED ANSWER:

a) The trouble is that the modern standard time clock runs fast in comparison to actual astronomical mean solar time. If they start synchronized, the standard clock completes a day in less time than solar time: about 0.002 s . So if the two clocks (standard and astronomical) are synchronized at the start of day 1 , then as each day goes by there is an accumulating time difference between them. At some point the standard clock completes a day 1 s before the astronomical mean solar clock.

The problem is essentially an amount-rate problem. You have an amount $A=1 \mathrm{~s}$ and a rate $R=0.002 \mathrm{~s} /$ day. The time t to accumulate the amount satisfies $A=R t$. Thus,

$$
t=\frac{A}{R}=\frac{1 \mathrm{~s}}{0.002 \mathrm{~s} / \text { day }}=500 \text { days }
$$

This simple calculation illustrates a vital, but simple, skill: calculating time needed from a rate and an amount. Learn it. Actually leap seconds are introduced at midnight on December 31 and June 30 as needed. For more on leap seconds see Wikpedia: Leap second.

Actually, there is a proposal to abolish leap seconds. It's a bother to keep adjusting for them. They are added every 18 months or so. So we need 2 every 3 years, 20 every 30 years, and 200 every 300 years. But 200 s is just 3.3 minutes. This amount of desychronization is not noticeable for most human purposes. It wouldn't be that 12 pm would being occuring at solar dawn or anything like that. So maybe we should have leap minutes when needed: i.e., every 100 years or so. Much less bother - and remember "don't do today what you can put off till tomorrow since tomorrow may never come".
b) This is another amount-rage problem - er amount-rate problem. In this case, $A=1 \mathrm{~s}$ again and $R=1.7 \times 10^{-5} \mathrm{~s} /$ year. So the time to accumulate the amount is

$$
t=\frac{A}{R}=\frac{1 \mathrm{~s}}{1.7 \times 10^{-5} \mathrm{~s} / \text { year }} \approx 6 \times 10^{4} \text { years }
$$

or about 60 millennia. And it was such an effort to get the 2 nd millennium over with. The rate of increase in the day will likely not stay constant.

FINAL NOTE: You may wonder, but probably not, how the discrepancy solar time and standard time grows if one accounts for the fact that that length of the day is growing too. It's turns out to be very tricky to do it exactly.

Let's say t^{\prime} is solar time measured in solar seconds and t is standard time measured in standard seconds. Both are clocks and the differential relationship is

$$
d t^{\prime}=R d t
$$

where R is a time-dependent scaling factor. So if the standard time clock passes time $d t$, then the solar time clock passes $R d t$. It's not that more or less time in a classical sense has passed for the solar clock: it's just recorded more or fewer ticks: it's running fast or slow. Say we model R by

$$
R=R_{0}+2 R_{1} t
$$

where R_{0} is the time zero scaling factor and $2 R_{1}$ is the time zero derivative of the scaling factor. The explicit 2 is inserted for a reason. For a finite standard time, one obtains by integration

$$
t^{\prime}=R_{0} t+R_{1} t^{2}
$$

One sees that the explicit 2 vanishes and that simplifies the appearance of the equation.
So one could evaluate t^{\prime} for any t if one knew the parameters R_{0} and R_{1}. One can obtain the them from two time measurements. These two time measurements give two equations

$$
t_{1}^{\prime}=R_{0} t_{1}+R_{1} t_{1}^{2} \quad \text { and } \quad t_{2}^{\prime}=R_{0} t_{2}+R_{1} t_{2}^{2}
$$

which can be solved for the unknown parameters. The solution can be found exactly. But let's say we take t_{1} to be so small that the term $R_{1} t_{1}^{2}$ is negligible. Then the solution for R_{0} is just

$$
R_{0}=\frac{t_{1}^{\prime}}{t_{1}}
$$

If t_{1} is one day, then

$$
R_{0}=\frac{t_{1}-x}{t_{1}}
$$

where x is the amount by which solar time lags from standard time which is about 0.002 s .
What of R_{1} ? Well dividing by t_{1} and t_{2}, we get

$$
\frac{t_{1}^{\prime}}{t_{1}}=R_{0}+R_{1} t_{1} \quad \text { and } \quad \frac{t_{2}^{\prime}}{t_{1}}=R_{0}+R_{1} t_{2}
$$

and then substracting the latter from the former and dividing by $t_{2}-t_{1}$, we get

$$
R_{1}=\frac{t_{2}^{\prime} / t_{2}-t_{1}^{\prime} / t_{1}}{t_{2}-t_{1}}
$$

If we could evaluate this from the results we know, it would be great. But what we know is that the increase in the length of the solar day $1.70 \times 10^{-5} \mathrm{~s} /$ year. Well by considering four times, two day intervals far apart, we could evaluate the R_{1} and verify that it has negligible effect for the length of day which confirms our approximation for evaluating R_{0}. Then we could use

$$
t^{\prime}=R_{0} t+R_{1} t^{2}
$$

to evaluate any discrepancy assuming our model was right and find out how long before the second term has an effect on the discrepancy. But I've lost patience with this issue.

Redaction: Jeffery, 2001jan01

Equation Sheet for Introductory Physics Calculus-Based

This equation sheet is intended for students writing tests or reviewing material. Therefore it is neither intended to be complete nor completely explicit. There are fewer symbols than variables, and so some symbols must be used for different things: context must distinguish.

The equations are mnemonic. Students are expected to understand how to interpret and use them.

1 Constants

$$
\begin{aligned}
c & =2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} \approx 2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s} \approx 1 \mathrm{lyr} / \mathrm{yr} \approx 1 \mathrm{ft} / \mathrm{ns} \quad \text { exact by definition } \\
e & =1.602176487(40) \times 10^{-19} \mathrm{C} \\
G & =6.67428(67) \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2} \quad(2006, \mathrm{CODATA}) \\
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} \quad \text { fiducial value } \\
k & =\frac{1}{4 \pi \varepsilon_{0}}=8.987551787 \ldots \times 10^{9} \approx 8.99 \times 10^{9} \approx 10^{10} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2} \text { exact by definition } \\
k_{\text {Boltzmann }} & =1.3806504(24) \times 10^{-23} \mathrm{~J} / \mathrm{K}=0.8617343(15) \times 10^{-4} \mathrm{eV} / \mathrm{K} \approx 10^{-4} \mathrm{eV} / \mathrm{K} \\
m_{e} & =9.10938215(45) \times 10^{-31} \mathrm{~kg}=0.510998910(13) \mathrm{MeV} \\
m_{p} & =1.672621637(83) \times 10^{-27} \mathrm{~kg}=938.272013(23), \mathrm{MeV} \\
\varepsilon_{0} & =\frac{1}{\mu_{0} c^{2}}=8.8541878176 \ldots \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \mathrm{~m}^{2}\right) \approx 10^{-11} \quad \text { vacuum permittivity (exact by definition) } \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2} \quad \text { exact by definition }
\end{aligned}
$$

2 Geometrical Formulae

$$
\begin{gathered}
C_{\mathrm{cir}}=2 \pi r \quad A_{\mathrm{cir}}=\pi r^{2} \quad A_{\mathrm{sph}}=4 \pi r^{2} \quad V_{\mathrm{sph}}=\frac{4}{3} \pi r^{3} \\
\Omega_{\text {sphere }}=4 \pi \quad d \Omega=\sin \theta d \theta d \phi
\end{gathered}
$$

3 Trigonometry Formulae

$$
\begin{gathered}
\frac{x}{r}=\cos \theta \quad \frac{y}{r}=\sin \theta \quad \frac{y}{x}=\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cos ^{2} \theta+\sin ^{2} \theta=1 \\
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta} \\
c^{2}=a^{2}+b^{2} \quad c=\sqrt{a^{2}+b^{2}-2 a b \cos \theta_{c}} \quad \frac{\sin \theta_{a}}{a}=\frac{\sin \theta_{b}}{b}=\frac{\sin \theta_{c}}{c} \\
f(\theta)=f\left(\theta+360^{\circ}\right) \\
\sin \left(\theta+180^{\circ}\right)=-\sin (\theta) \quad \cos \left(\theta+180^{\circ}\right)=-\cos (\theta) \quad \tan \left(\theta+180^{\circ}\right)=\tan (\theta) \\
\sin (-\theta)=-\sin (\theta) \quad \cos (-\theta)=\cos (\theta) \quad \tan (-\theta)=-\tan (\theta)
\end{gathered}
$$

$$
\begin{aligned}
& \sin \left(\theta+90^{\circ}\right)=\cos (\theta) \quad \cos \left(\theta+90^{\circ}\right)=-\sin (\theta) \quad \tan \left(\theta+90^{\circ}\right)=-\tan (\theta) \\
& \sin \left(180^{\circ}-\theta\right)=\sin (\theta) \quad \cos \left(180^{\circ}-\theta\right)=-\cos (\theta) \quad \tan \left(180^{\circ}-\theta\right)=-\tan (\theta) \\
& \sin \left(90^{\circ}-\theta\right)=\cos (\theta) \quad \cos \left(90^{\circ}-\theta\right)=\sin (\theta) \quad \tan \left(90^{\circ}-\theta\right)=\frac{1}{\tan (\theta)}=\cot (\theta) \\
& \sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) \quad \cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b) \\
& \sin (2 a)=2 \sin (a) \cos (a) \quad \cos (2 a)=\cos ^{2}(a)-\sin ^{2}(a) \\
& \sin (a) \sin (b)=\frac{1}{2}[\cos (a-b)-\cos (a+b)] \quad \cos (a) \cos (b)=\frac{1}{2}[\cos (a-b)+\cos (a+b)] \\
& \sin (a) \cos (b)=\frac{1}{2}[\sin (a-b)+\sin (a+b)] \\
& \sin ^{2} \theta=\frac{1}{2}[1-\cos (2 \theta)] \quad \cos ^{2} \theta=\frac{1}{2}[1+\cos (2 \theta)] \quad \sin (a) \cos (a)=\frac{1}{2} \sin (2 a) \\
& \cos (x)-\cos (y)=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) \\
& \cos (x)+\cos (y)=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) \\
& \sin (x)+\sin (y)=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)
\end{aligned}
$$

4 Approximation Formulae

$$
\begin{aligned}
\frac{\Delta f}{\Delta x} \approx \frac{d f}{d x} \quad \frac{1}{1-x} \approx 1+x:(x \ll 1) \\
\sin \theta \approx \theta \quad \tan \theta \approx \theta \quad \cos \theta \approx 1-\frac{1}{2} \theta^{2} \quad \text { all for } \theta \ll 1
\end{aligned}
$$

5 Quadratic Formula

If

$$
0=a x^{2}+b x+c, \quad \text { then } \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=-\frac{b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\frac{c}{a}}
$$

6 Vector Formulae

$$
\begin{gathered}
a=|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}} \quad \theta=\tan ^{-1}\left(\frac{a_{y}}{a_{x}}\right)+\pi ? \quad \vec{a}+\vec{b}=\left(a_{x}+b_{x}, a_{y}+b_{y}\right) \\
a=|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \quad \phi=\tan ^{-1}\left(\frac{a_{y}}{a_{x}}\right)+\pi ? \quad \theta=\cos ^{-1}\left(\frac{a_{z}}{a}\right) \\
\vec{a}+\vec{b}=\left(a_{x}+b_{x}, a_{y}+b_{y}, a_{z}+b_{z}\right) \\
\vec{a} \cdot \vec{b}=a b \cos \theta=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
\vec{c}=\vec{a} \times \vec{b}=a b \sin (\theta) \hat{c}=\left(a_{y} b_{z}-b_{y} a_{z}, a_{z} b_{x}-b_{z} a_{x}, a_{x} b_{y}-b_{x} a_{y}\right)
\end{gathered}
$$

7 Differentiation and Integration Formulae

$$
\frac{d\left(x^{p}\right)}{d x}=p x^{p-1} \quad \text { except for } p=0 ; \quad \frac{d\left(x^{0}\right)}{d x}=0 \quad \frac{d(\ln |x|)}{d x}=\frac{1}{x}
$$

Taylor's series $\quad f(x)=\sum_{n=0}^{\infty} \frac{\left(x-x_{0}\right)^{n}}{n!} f^{(n)}\left(x_{0}\right)$

$$
=f\left(x_{0}\right)+\left(x-x_{0}\right) f^{(1)}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{(2)}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} f^{(3)}\left(x_{0}\right)+\ldots
$$

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a) \quad \text { where } \quad \frac{d F(x)}{d x}=f(x)
$$

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \text { except for } n=-1 ; \quad \int \frac{1}{x} d x=\ln |x|
$$

8 One-Dimensional Kinematics

$$
\begin{gathered}
v_{\mathrm{avg}}=\frac{\Delta x}{\Delta t} \quad v=\frac{d x}{d t} \quad a_{\mathrm{avg}}=\frac{\Delta v}{\Delta t} \quad a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} \\
v=a t+v_{0} \quad x=\frac{1}{2} a t^{2}+v_{0} t+x_{0} \quad v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
x=\frac{1}{2}\left(v_{0}+v\right) t+x_{0} \quad x=-\frac{1}{2} a t^{2}+v t+x_{0} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

$$
\begin{array}{r}
x_{\mathrm{rel}}=x_{2}-x_{1} \quad v_{\mathrm{rel}}=v_{2}-v_{1} \quad a_{\mathrm{rel}}=a_{2}-a_{1} \\
x^{\prime}=x-v_{\text {frame }} t \quad v^{\prime}=v-v_{\text {frame }} \quad a^{\prime}=a
\end{array}
$$

