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Cosmology & Galaxies NAME:

Homework 26: Cosmic Present Galaxy Environments: Interactions, Galaxy Groups, Galaxy

Clusters, Galaxy Superclusters, Large-Scale Structure

1. There is no sharp distinction, in fact, between groups and clusters and one can regard groups as just very
poor clusters. However, by Ci-165,167,174’s account, fiducially groups have 3 to x non-dwarf galaxies
and clusters have x to a few thousand non-dwarf galaxies, and groups have virial mass <∼ y M⊙ and
clusters have virial mass y to 1015 M⊙. Now x and y are, respectively:

a) 10 and 1010. b) 20 and 1011. c) 50 and 1014. d) 500 and 3 × 1014.
e) 1000 and 3 × 1014.

2. The Local Group has only 3 non-dwarf galaxies (all spiral galaxies): the Milky Way, the Andromeda
Galaxy (M31), and the:

a) Aries Galaxy (M33). b) Boötes Galaxy (M33). c) Monoceros Galaxy (M33).
d) Pegasus Galaxy (M33). e) Triangulum Galaxy (M33).

3. Galaxy clusters have (1 − x) to 90 % of their mass as dark matter. Baryonic matter mostly in the form
of intracluster gas is the rest of the mass. Stars make up only 1 to 5 % of the mass. The value x is, in
fact, the cosmic baryonic mass fraction set by Big Bang nucleosynthesis and other information. Among
dark matter halo structures in the observable universe, only the largest clusters have baryonic mass
fraction as large as the cosmic mass fraction x whose value is:

a) 50 %. b) 40 %. c) 33 %. d) 16 %. e) 12 %.

4. The intracluster medium (ICM) temperature is

a) (2–10)× 107 K. b) (5–10)× 107 K. c) (2–10)× 108 K. d) (5–10)× 108 K.
e) (2–10)× 109 K.

5. In this problem, we derive the general classical pressure for formula and some special cases. A remarkable
fact is that the same formula follows from a quantum mechanical derivation with box quantization
(Wikipedia: Particle in a box). This suggests that the formula is really very general.

NOTE: There are parts a,b,c,d. On exams, do all parts with minimal words.

a) Draw a diagram with a horizontal differential surface area vector d ~A with the vector pointing up.

Now consider a flow of particles in a general direction through d ~A. Write down the formula for
the differential dP dt dA (where capital P is pressure) for the flow of particles of momentum p
through dA with velocity v in differential time dt, in differential particle momentum range dp,
in differential angle dΩ = dµ dφ (where µ = cos(θ) and dµ = d cos(θ) = − sin(θ) dθ), and given
the isotropic directional distribution of particles per volume per momentum N(p)/(4π) (where the
angle-integrated distribution is N(p)). HINT: You will need two factors of cos(θ): one to account

for the fact that it is only the component of mometum in the direction of d ~A that contributes to
pressure and the other to account for the fact that there is reduced area for the beam of particles
going through dA obliquely.

b) Now write down the momentum integral for pressure after having integrated over all angle.

c) Let ε be kinetic energy density. Write for formula for pressure as a function of ε in two limits: the
non-relativistic (NR) limit where p = mv and the extreme relativistic (ER) limit where v = c and
p = K/c, where K is kinetic energy per particle.

d) We note that the pressure formulae of parts (b) and (c) are independent of the nature of the
distribution N(p). It could be a thermodynamic equilibrium distribution, but also anything else.
For the (thermodynamic equilibrium) Maxwell-Boltzmann distribution for NR classical particles
N(p) dp = nf(v) dv (where n is particle density),

〈v2〉 =
3kT

m
and Eenergy per particle =

3

2
kT

(Wikipedia: Maxwell-Boltzmann distribution; Wikipedia: Ideal gas law: Energy associated with a
gas). On the other hand for a photon gas (which is made of ER particles),

ε = aT 4 ,
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where a is the radiation density constant (Wikipedia: Photon gas; Wikipedia: Stefan-Boltzmann
law). Write down the pressure formulae for the cases of the Maxwell-Boltzmann distribution and
the photon gas.

6. The mean atomic mass is defined
1

µ
=

∑

i

Xi

Ai
,

where the sum is over all species present, Xi is the mass fraction of species i and Ai is the atomic mass
(i.e., the mass in a standard microscopic unit). Cimatti (2020) uses the proton mass mp as the standard
microscopic mass probably since the universe is made of hydrogen and not of daltons (i.e., 1/12 of an
unperturbed carbon-12 atom). Written it as we have, the quantity 1/µ = n/(ρ/mp) (where n is the
number of free particles) is the mean number of free particles per proton mass in the substance and
µ = (ρ/mp)/n is the mean mass in units of the proton mass of the free particles.

NOTE: There are parts a,b,c. On exams, do all parts with minimal words.

a) What is the formula for the number density of a substance with mass density ρ?

b) Say you have a gas of completely ionized hydrogen. What is the exact formula for 1/µ and what is
the approximate value of 1/µ. Assume mp is the exactly the proton mass and not just the hydrogen
atom mass.

c) In this part, assume that the sum is only over nuclides and does not include free electrons. Say you
have a completely ionized gas with the hydrogen mass fraction X1 and everything else collective
mass fraction (1 − X1). Assume the atomic mass of hydrogen is A1 = 1 and for everything not
hydrogen approximate (Zi + 1)/Ai = 1/2. What is the formula for the approximate mean atomic
mass in terms of X1? Give the special cases where X1 equals 1, 3/4, 1/2, 1/3, and 0.

7. In this problem we investigate the β-model of (galaxy cluster) gas particle density. The β-model is
probably only order of magnitude accurate, but it is a standard fiducial model for the gas particle
density.

NOTE: There are parts a,b,c,d. On exams, do only parts a,b,c with minimal words.

a) The hydrostatic equililibrium equation for a spherically symmetric mass distribution is

dp

dr
= −Gm(r)

r2
ρ ,

where r is radius coordinate, p is pressure, ρ is density, and m(r) is interior mass (i.e., the mass
interior to a shell of radius r). In fact, the equation can be written separately for each species in
the distribution if they are decoupled: i.e., the pressure of one species is felt only by that species.
In galaxy clusters, there are 3 decoupled species:
1) Gas with particle density n = ρ/(µmp) and p = nkT (with T approximated as constant

for the β-model).
2) Galaxies with galaxy number density ngal, galaxy mass density ngalmgal (with mgal

approximated as constant for the β-model), and pressure approximated ngalmgalσ
2
los

(where σlos the mean line-of-sight dispersion for the galaxies for the β-model). Note
d ln(ngalmgalσ

2
los) = d ln(ngal) since mgal and σ2

los are constants.
3) Dark matter with density ρDM and effective pressure pDM (whatever that may be).

Write the hydrostatic equililibrium equation in terms of the (p/ρ)d ln(p)/d ln(r) specialized for each
species compactly on one line.

b) Using the results of part (a), solve for the proportionality between n and ngal in terms of the
constant

β =
σ2

los

kT/(µmp)
=

(µmp)σ2
los

kT
.

c) Given fiducial (but probably only order a magnitude accurate) King profile

ngal(r) = ngal,0

[

1 +

(

r

rc

)2
]−3/2

=
ngal,0

[

1 + (r/rc)
2
]3/2
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(where ngal,0 is central galaxy density and rc a core radius), determine a β-model density profile.
Given that fiducial range for β is [1/2, 1], what can one say about the gas density profile relative
to the galaxy density profile.

d) The X-ray emissivity from galaxy clusters is approximately given jX ∝ n2 and the line-of-sight
surface brightness at project radius R is for optically thin gas

IX(R) = 2

∫ ∞

R

jXr dr√
r2 − R2

,

where r radial coordinate to the line-of-sight coordinate and spherical symmetry is assumed. Solve
the integral approximately to within an unspecified factor for part (c) gas density profile. You will
have to make an order of magnitude approximation whose chief virtue is that it makes the integral
analytically tractable.

8. There are many statistical measures for the distribution of galaxies. All of them are trying to capture
aspects of large-scale structure. The ideal statistical measure would capture all aspects and would exactly
specify large-scale strurcture completely. But the ideal has not been reached, and so multiple statistical
measures are used. Comparing a statistical measure’s values for large-scale structure simulations and
those for observed large-scale structure is a test of the simulations.

Probably the simplest statistical measure is the 2-point correlation function ξ(r) which appears in
the following equation

dN = n[1 + ξ(r)] dV ,

where n is the mean number of galaxies per unit volume in the observable universe and dN is the mean
number of galaxies in volume dV located at a distance r from a reference galaxy at r = 0 (Ci-188–
190). There must be some probability distribution from which this mean is derived, but yours truly
cannot located it at the moment. However, if the ξ(r) = 0 everywhere, the distribution is the Poisson
distribution and the mean number of galaxies in dV is just n dV . Note if ξ(r) > 0 for small r, galaxies
tend to cluster and if ξ(r) < 0 for small r, galaxies tend to avoid each other.

NOTE: There are parts a,b,c. On exams, do all parts with minimal words.

a) Prove

lim
V →∞

∫

V

ξ(r) dV = 0 .

b) For r ≤ 10 Mpc, the fiducial version of the 2-point correlation function is

ξ(r) =
(rs

r

)α

= x−α ,

where scale radius rs = 5 Mpc, α = 1.8, and x = r/rs (Ci-189). For r >∼ 10 Mpc, ξ(r) oscillates
around zero, but there is a positive feature at the baryon acoustic oscillation (BAO) scale
∼ (140/h70)Mpc (Ci-189). Determine the function N(x) for x ≤ 2 and give expressions for N(0),
N(1), and N(2): numerical evaluation is not required.

c) As mentioned above, the probability distribution from which the mean given by the 2-point
correlation function is derived has not been located at the moment by yours truly. However,
the Poisson distribution is

P (k) = e−µ µk

k!
,

where k is the number of events and µ is the mean of the distribution (i.e., the mean number of
events) (Be-36–43,53). The Poisson distribution can be viewed as the extreme limit of the binomial
distribution where total possible number of events is infinity, and so the number of events observed
is always small. The ℓth moment of the Poisson distribution is given by

〈kℓ〉 = e−µ
∞
∑

k=0

kℓµk

k!
= e−µ

(

µ
d

dµ

)ℓ

eµ ,

where the last formula is a trick where you treat µ as variable. Evaluate the moments for ℓ ∈ [0, 2]
and the standard deviation for the Poisson distribution.


