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Cosmology NAME:

Homework 5: Advance Solutions of the Friedmann Equation

005 qfull 00630 1 3 0 easy math: Einstein universe, einstein universe
1. The Einstein universe (proposed by Einstein in 1917) was the first cosmological model derived

consistently from a physical theory (i.e., general relativity) and was the beginning of modern cosmology.
Einstein assumed the cosmological principle (i.e., a homogeneous, isotropic universe) and represented
the mass-energy by a pressureless perfect fluid where the density scaled as a−3. In modern cosmology
jargon, this kind of perfect fluid is called “matter” and approximates ordinary baryonic matter and
dark matter For cosmological purposes, matter has approximately zero kinetic energy relative its local
comoving frame.

Einstein believing in 1917 that the universe was one of stars (which seemed on average at rest)
and not galaxies wanted a static model, but found that impossible with his field equations as originally
formulated (O’Raifeartaigh et al. 2017). So he added the cosmological constant term Λ to the field
equations which was the simplest possible modification and had no significant effect on smaller-than-
cosmological-scale phenomena. The Einstein universe he obtained is a finite, boundless, positively
curved universe or hyperspherical universe. It is geometrically the 3-dimensional surface of the a 3-
sphere (which is actually a 4-dimensional sphere in Euclidean or flat space). The distance to return to
the same point along a geodesic is 2πa0, where a0 is the Gaussian curvature radius a hyperspherical
universe. (CL-11–12). For considering the Einstein universe, a0 is not the conventional dimensionless
quantity but a physical proper distance with units of length.

Einstein in 1931 abandoned the Einstein universe since observations showed an expanding universe
and because the Einstein universe had been shown to be unstable by Eddington in 1930 (O’Raifeartaigh
et al. 2017 p. 36, 41).

Note that Einstein did not have the Friedmann equation and acceleration equation when he derived
the Einstein universe. He used a general relativity directly and followed a “rough and winding road”
(O’Raifeartaigh et al. 2017, p. 18).

In this problem, we investigate the Einstein universe. There are parts a,b,c,d,e,f,g,h. In exam
environments, do ONLY parts a,b,c,d.

NOTE: This question has MULTIPLE PAGES on an exam.

a) The Friedmann equation and acceleration equation in forms appropriate for solving for the Einstein
universe and investigating its stability are
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(Li-55 mutatis mutandis), where x = a/a0, a0 is the Gaussian curvature radius of the Einstein
universe (as aforesaid), ρ0 is the density of Einstein universe, k = 1 for a positive curvature
universe,

ΩM = 1 , Ωk = − kc2

a2
0(8πGρ0/3)

, and ΩΛ =
Λ

8πGρ0
.

Note we cannot use the Hubble parameter H in defining the density parameter Ωi quantities since
H = 0 for the Einstein universe.

The Einstein universe has x = 1, ẋ = 0, ẍ = 0 and ρ = ρ0. Given the Einstein-universe values,
determine formula for Λ from the first form of the acceleration equation and the numerical value
of ΩΛ from the second form.

b) Given the Einstein-universe values, determine the formula for a0 as function of ρ0 and then the
formula for a0 as a function of Λ. Hint: Start from the second form of the Friedmann equation
and recall the given formula for Ωk.

c) Given G = 6.67430(15) × 10−11 MKS, vacuum light speed c = 2.99792458 × 108 m/s, ρ0 =
0.85 × 10−26 kg/m3 (which is suggest value of the critical density circa 2021), and 1 Gpc =
(3.085677581 . . .)×1025 m, calculate the Gaussian curvature radius a0 in units of gigaparsecs (Gpc).
You can use your phone for the calculations—but only for those.
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d) Now write the Friedmann equation in the dimensionless form

dx

dτ
= ±

√

f(x) ,

where the dimensionless time τ is given by

τ = t

√

8πGρ0

3
.

Sketch a plot the radicand f(x) for x ≥ 0 going left from x = 1 to x = 0 and right from x = 1 to
x = ∞. Using the first two derivatives of f(x) as a function of x (not τ) prove that the Einstein
universe (i.e., the x = 1 case) is a unique static universe for x ≥ 0.

e) For the initial condition x1 greater/less than 1 at τ1 and the positive/negative case for x′ = ±
√

f(x),
describe the evolution of x with τ increasing and in particular what happens if x → 0. Explain the
evolutions and describe the stability of the Einstein universe to perturbations in these cases. Hint:
It might help to draw a figure of the evolutions.

f) For the initial condition x1 greater/less than 1 at τ1 and the negative/positive case for x′ = ∓
√

f(x),
describe the probable evolution of x with τ → ∞. Prove these evolutions and describe the stability
of the Einstein universe to perturbations in these cases. Hint: The proof requires that you show
that all orders of derivative of x are zero when x is stationary. You will need to determine the x′′,
x′′′, and x(4), notice some things about these orders of derivative, and add some explanatory words.
Also, it might help to draw a figure of the evolutions.

g) From parts (d) and (e), what is the stability of the Einstein universe to general perturbations of a?
Note a solution is unstable to general perturbations if it is unstable to any kind of perturbations.

h) Given all the answers to the other parts, discuss how an Einstein universe filled with real gas
(including dark matter gas) and/or stars might evolve.

SUGGESTED ANSWER:

a) From the first and second forms of the acceleration equation, respectively, by inspection,
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2
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2
.

b) From the second form of the Friedmann equation,
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(CL-28).

c) Behold:

a0 =
c√

4πGρ0

= [(3.6387557 . . .)Gpc] ×
√

(
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G

) (
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)

.

This Gaussian curvature radius is significantly smaller than the Λ-CDM model observable
universe radius currently about r = 14.25 Gpc.

d) Behold:
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where the radicand and its first two derivatives are

f(x) =
1

x
− 3

2
+

x2

2

df

dx
= − 1

x2
+ x

d2f

dx2
=

2

x3
+ 1 .

You will have to imagine the plot. At x = 1, f(x) has a zero: i.e., f(x = 1) = 0. To the left of
x = 1, f(x) rises to infinity asymptotically as 1/x. To the right of x = 1, f(x) rises to infinity
asymptotically as x2.

As aforesaid, f(x) has a zero at x = 1. From df/dx, we find

xstationary = ei(2πn/3)

where unique values only occur for n = 0, n = 1, and n = 2. The only real stationary point is
for n = 1 which gives

xstationary = 1 .

which is the location of the known zero. Since d2f/dx2 > 0 at x = 1, we know f(x) is a
minimum there and, of course, it is the only real minimum f(x) has.

Now x = 1 is the Einstein universe itself. There can be no other zeros for for x ≥ 0 since
x = 1 is the unique minimum of f(x). Since there are no other zeros for x ≥ 0, we see that
there are no other static universes, just the Einstein universe.

Note for x ≤ 0, there are no stationary points and f(x) going leftward rises asymptotically
as 1/x from negative infinity at x = 0 to 0 at x = −2 (which cannot be a physical universe),
and then rises to positive infinity asymptotically as x2.

e) For x1 greater/less than 1, the positive/negative x slope ±
√

f(x) causes the x function to
increase/decrease to infinity/zero as τ increases. In the case where x decreases, the slope when
x → 0 is infinite: this is a Big Crunch in cosmology jargon. Because of the divergence of the
solutions from x = 1 (which is the Einstein universe itself), the Einstein universe is unstable
for perburbations to x1 greater/less than 1 and positive/negative slope ±

√

f(x).

f) For x1 greater/less than 1, the negative/positive x slope ∓
√

f(x) probably causes the x function
to decrease/increase to 1 at τ → ∞: i.e., in this case x converges asymptotically to the Einstein
universe. To prove this evolution, consider
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.

Note that the shown orders of derivative are all zero for x = 1. Note also that whenever a
factor of x′′ turns up in a higher order of derivative, it can replaced by (1/2)(−1/x2 +x) which
is zero for x = 1. Always making this replacement, all terms in higher orders of derivative will
equal expressions with at least one factor of x′ or one factor of (1/2)(−1/x2 + x), will have no
higher orders of derivative of x, and will have no factor that is infinite for x = 1. Thus, all
orders of derivative higher than 4 are also zero for x = 1. There seems no elegant way to show
this, but it’s clear enough.

Now if the x solutions reach x = 1 at say finite τ2, there would have to be some curvature
at τ2 (i.e., at least one non-zero order of derivative at τ2) since there are no discontinuities
in the x solutions (except for x = 0). We conclude that x solutions for specified cases only
reach x = 1 asymptotically as τ → ∞. Thus our original description of the evolutions is
correct. Because of the asymptotic convergence of the solutions to x = 1 as τ → ∞, the
Einstein universe is stable for perburbations to x1 greater/less than 1 and negative/positive
slope ∓

√

f(x).

g) Since the Einstein universe is unstable to perturbations of a of the cases of part (d), it is unstable
to general perburations of a even though it is stable to the special case of perturbations of a
of part (e).
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h) A realistic Einstein universe consisting of a real gas and/or stars will probably be unstable to
local perturbations: e.g., density, velocity, or curvature perturbations. The initial conditions
of the realistic Einstein universe can be left unexplained if you like since there are always
unexplained initial conditions in cosmology no matter what you do. Yours truly guesses
that some regions of the Einstein universe will start expanding and others contracting. The
contracting regions will probably become gravitationally bound at some point and be supported
by rotational kinetic energy. They would become something like galaxies or dark matter halos.
However, the cosmological constant term will drive an overall expansion between the bound
systems.

Superficially at least, the post-Einstein universe (as it can be called) would resemble the
Big Bang universe, but without a Big Bang. It could have a very long phase of slow evolution
before the nonlinear growth of density perturbations lead to galaxies or dark matter halos.
This slow evolution would have been an attractive feature before the 1950s. In those days, the
Hubble constant was measured to be of order 500 km/s/Mpc (e.g., Tammann 2005, arXiv:astro-
ph/0512584, p. 6) implying a Hubble time of order 2 Gyr which was smaller than the age of
the Earth estimate of order 3 Gyr made in the 1930s (see Wikipedia: Age of the Earth:
Radiometric dating). In a Big Bang universe with negative acceleration (which is what you get
without a positive cosmological constant or constant dark energy), the age of the universe is less
than the Hubble time. So back before the 1950s, there was a tension between age of the Earth
Hubble constant in a Big Bang universe which could be avoided with the post-Einstein universe.
However, the Hubble constant was revised down to less than 200 km/s/Mpc in the 1950s (e.g.,
Tammann 2005, arXiv:astro-ph/0512584, p. 6) and this eliminates the attractive early slow
evolution of the post-Einstein universe. Of course, the Big Bang universe provides a natural
explanation for the cosmic microwave background and the primordial cosmic abundances of
H, D, He, and Li. The post-Einstein universe if it started dense and hot enough could explain
the cosmic microwave background, but not the primordial cosmic abundances. Both universes
have unexplained initial conditions without another theory. The leading other theory since
circa 1980 is inflation which works for the Big Bang theory, but probably not the post-Einstein
universe. But to follow up the point from above about initial conditions, what set the initial
conditions for the pre-inflaction universe?

In fact, the post-Einstein universe under the name of the Lemâıtre-Eddington universe
was proposed in 1925 by Lemâıtre and supported by Eddington (e.g., Bondi 1960, p. 84–85,
117–121, 159, 175, 180). The Lemâıtre-Eddington universe itself fell out of favor circa 1935 for
whatever reason (Bondi 1960, p. 119). However, the Lemâıtre universe (1931; see Bondi 1960,
p. 84–85, 120–122, 165ff, 176, 180) which proposed a Big Bang phase evolving into an Einstein
phase and then evolving into accelerating phase had a vogue from the 1931 to the 1950s. In
fact, the Lemâıtre universe is a lot like the Λ-CDM model except with an Einstein phase and
positive curvature. Maybe the Lemâıtre universe will make a comeback and relieve the Hubble
tension of circa 2017–2030. This seems an unlikely hypothesis.

Fortran-95 Code
print*

print*,’CPB.’

! pi=acos(-1.0_np)

pi=3.14159265358979323846264338327950288419716939937510_np

!

!!23456789a123456789b123456789c123456789d123456789e123456789f123456789g12

! ! https://en.wikipedia.org/wiki/Pi#Approximate_value_and_digits 51

digits

grav=6.67430e-11_np

! http://en.wikipedia.org/wiki/Gravitational_constant MKS error (15):

! ! so 4 digit accurate, but there is controversy

clight=2.99792458e8_np ! light speed in m/s

! ! https://en.wikipedia.org/wiki/Speed_of_light

! pc_m=(1.49597870700e11_np/(pi/(180.0_np*3600.0_np)))

pc_m=9.6939420213600000e+16_np/pi

! !

https://en.wikipedia.org/wiki/Parsec#Calculating_the_value_of_a_parsec

! ! http://en.wikipedia.org/wiki/Astronomical_unit
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xgpc_m=pc_m*1.e+9_np ! Also the conversion Mpc to m

rho_c=0.85e-26_np !

! %

https://en.wikipedia.org/wiki/Observable_universe#Estimates_based_on_critical_density

a_0=clight/sqrt(4.0_np*pi*grav*rho_c)/xgpc_m

print*,’a_0’

print*,a_0

! 3.6387557188704396337 Seems to be right.

Redaction: Jeffery, 2018jan01

005 qfull 00810 1 3 0 easy math: 1st order DE rule
2. First order (ordinary) differential equations that are autonomous (meaning they have no explicit

dependence on the independent variable) can only have stationary points at infinity (i.e., plus or minus
infinity) and each such stationary point corresponds to a static solution. Hereafter for brevity, we call
such differential equations 1st order DEs and the rule they obey the 1st order DE rule. The form of
these 1st order DEs is

x′ = f(x) ,

where x is the dependent variable and t is the independent variable and we assume f(x) is infinitely
differentiable and contains no fractional roots. There are exceptions to the 1st order DE rule. The ones
known to yours truly are of the form

x′ = ±[g(x)]P ,

where P = (1 − 1/n) with n ∈ [2,∞) and we assume g(x) is infinitely differentiable with respect to x.
Note g(x) may go negative as a function of x, but we assume it does not negative as function of t at
stationary points. The most obvious and most important exception is for n = 2 (i.e., P = 1/2) which
gives

x′ = ±[g(x)]1/2 ,

which is exampled by the Friedmann equation. In fact for n ≥ 3, yours truly know of no interesting
cases at all. There may other exceptions to the 1st order DE rule yours truly knows not of. In this
problem, we only treat the cases that obey the 1st order DE rule.

NOTE: There are parts a,b,c,d.

a) Given xi (or in the time variable ti) is a stationary point of x′ = f(x) (i.e., x′(xi) = f(xi) =
f [x(ti)] = 0), prove without words that x′′(xi) = 0.

b) The part (a) answer gives the base case (or 1st step) for a proof by induction that all orders of
derivative of x with respect to t at xi (or in the time variable ti) are zero. The proof follows by
inspection if your math intuition is good enough. However, do a formal proof by induction. Hint:
For the proof, you do NOT, in fact, need the full general Leibniz rule for the derivative of a product
(Ar-558)

dm(fg)

dxm
=

m
∑

k=0

(

m

k

)

dkf

dxk

dm−kg

dxm−k
.

Using it actually makes the proof a bit more tricky to follow. But you do need to know that the
nth order derivative of x (i.e., x(n)) is obtained by applying the general Leibniz rule for m = n− 2
to the result of the part (a) answer and that highest derivative of x on the right-hand side of that
application is x(n−1). Note that f(x) is general to the degree specified in the preamble, and so the
proof is unchanged if any order of derivative f(x) with respect to x is zero at xi.

c) Given the part (b) result, give an argument for why the stationary point ti must be all points (i.e.,
is actually a static solution) or at time equals infinity.

d) A 1st order DE system given a small perturbation from a static solution either asymtotically goes
back to it (i.e., is asymptotic to it at positive infinity, and so is called stable) or grows away from
it (i.e., is asymptotic to it at negative infinity, and so is called unstable). Assuming the df/dx is
nonzero at xi, prove without words that a 1st order DE system given a small perturbation (i.e.,
a perturbation ∆x0 which requires only 1st order expansion of f(x) in small ∆x = x − xi) varies
exponentially and determine the condition for stability.

SUGGESTED ANSWER:
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a) Behold:

1) x′ = f(x) 2) x′′ =
df

dx
x′ 3) x′′(xi) =

df

dx
x′(xi) = 0 .

b) Part (a) gave the first step of the proof by induction: i.e., that x′′(xi) = 0. The second step is
assuming x(j)(xi) = 0 for all j ∈ [1, n − 1] and then for the third step expanding

x(n) =
dn−2 [(df/dx)x′]

dtn−2
=

n−2
∑

k=0

(

n − 2

k

)

dk(df/dx)

dtk
dn−2−kx′

dtn−2−k

=

n−2
∑

k=0

(

n − 2

k

)

dn−2−k(df/dx)

dtn−2−k

dkx′

dtk

=
dn−2(df/dx)

dtn−2
x′ + . . . +

df

dx
(x′)(n−2) =

dn−1f)

dxn−1
(x′)n−1 + . . . +

df

dx
(x′)(n−2)

= terms all with factors of (x′)(j) with j ∈ [1, n − 2]

= terms all with factors x(j) with j ∈ [1, n − 1]

which are all zero for x = xi by assumption

x(n)(xi) = 0 QED.

Since the result is for general n, we have x(n)(xi) = 0 for all n ≥ 1.

c) If all orders of derivative are zero at ti, the solution of x must be constant to ±∞ with value
xi (i.e., must be a static solution xi) or it is asymptotically constant at one of ±∞ where it is
asymptotic to asymptote x = xi.

d) Behold:

x′ = f(x) = f(xi) + ∆x
df

dx

∣

∣

∣

∣

xi

+ . . . = 0 + ∆x
df

dx

∣

∣

∣

∣

xi

+ . . . = ∆x
df

dx

∣

∣

∣

∣

xi

+ . . . ,

where ∆x = x − xi and hereafter we set R = df/dx|xi
for niceness. For perturbation ∆x0

sufficiently small, we have the approximate 1st order DE and solution

1)
d∆x

dt
= ∆xR 2)

d∆x

∆x
= R dt 3)

d(±∆x)

(±∆x)
=

d(|∆x|)
|∆x| = R dt

4) ln

(
∣

∣

∣

∣

∆x

∆x0

∣

∣

∣

∣

)

= Rt 5) |∆x| = |∆x0|eRt 6) ∆x = ∆x0e
Rt

where the upper case is for ∆x0 > 0 and the lower case is for ∆x0 < 0. Note we did not
need the upper/lower case stuff if we just knew that the antiderivative of 1/y is always ln(|y|).
From expression (5), we see that the exponential variation is away from the static solution for
R > 0 and toward the static solution if R < 0. Thus, the condition for stability is R < 0
and the condition for instability is R > 0. If R = 0, then one must check what happens
for the first higher order expansion term n of f(x) where the nth order derivative coefficient
(dnf/dxn)|xi

6= 0.

Redaction: Jeffery, 2018jan01

005 qfull 00812 1 3 0 easy math: perturbation solutions for 1st order DEs
3. Consider the 1st order (ordinary, autonomous) differential equation

x′ = f(x) ,

where x is the dependent variable and t is the independent variable and we assume f(x) is infinitely
differentiable and contains no fractional roots. The 1st order DE rule (as yours truly calls it) applies to
this DE. We have f(xi) = 0 and therefore xi yields a constant solution and a stationary point at either
of ±∞.

NOTE: There are parts a,b.
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a) Assuming (df/dx)(xi) 6= 0, solve without words for the 1st order perturbation solution in small
∆x = x − xi. Let ∆x0 be the initial perturbation, time zero is 0, and R1 = (df/dx)(xi) for
compactness. What is the condition for convergence/divergence in the future to the constant
solution? What is the condition for convergence/divergence in the past to the constant solution?
Hint: Recall the antiderivative of 1/y is always ln(|y|).

b) Now assume the lowest order nonzero coefficient in the expansion of f(x) in small δx is (dkf/dxk)(xi)
where k ≥ 2. The write the solution only in terms of |∆x| and |∆x0| since that seems most clear
and start from the differential form

d|∆x|
|∆x|k = hRk dt ,

where for k even h = ±1 with upper case for ∆x > 0 and lower case for ∆x < 0 and for k odd
h = 1, and Rk = (dkf/dxk)(xi) for compactness. Show why this differential form is correct before
you use it.

c) What happens as hRkt INCREASES/DECREASES from 0? At what time t is there an infinity?

SUGGESTED ANSWER:

a) Behold:

1)
d∆x

dt
= ∆xR1 2)

d∆x

∆x
= R1 dt 3) ln

(∣

∣

∣

∣

∆x

∆x0

∣

∣

∣

∣

)

= R1t

4) |∆x| = |∆x0| exp(R1t) 5) ∆x = ∆x0 exp(R1t) .

As expression (5) shows convergence (divergence) in the future is given for R1 < 0 (R > 0).
As expression (5) shows convergence (divergence) in the past is given for R1 > 0 (R < 0).

b) Behold:

1)
d∆x

dt
= ∆xkRk 2)

d∆x

∆xk
= Rk dt 3)

d(±∆x)

(±∆x)k
= hRk dt

4)
d|∆x|
|∆x|k = hRk dt 5)

|∆x|−k+1

−k + 1

∣

∣

∣

∣

∆x

∆x0

= hRkt

6) |∆x|−k+1 = |∆x0|−k+1 − (k − 1)hRkt

7) |∆x| =

[

1

1/|∆x0|k−1 − (k − 1)hRkt

]1/(k−1)

.

Note that if k is even, then (±∆x)k = ∆xk and in order to turn the differential d∆x into (±∆x)
we need to multiply the other side of the equation by h = ±1. If k is odd, then (±∆x)k = ±∆xk

and in order to turn the differential d∆x into (±∆x) we just need to multiply top and bottom
of d∆x/∆xk by ±1 and in this case h = 1.

b) As hRkt increases/decreases from 0, ∆x diverges/converges relative to the constant solution.
In fact, the diverging solution goes to +∞ at

t =
1

(k − 1)hRk|∆x0|k−1
.

Redaction: Jeffery, 2018jan01

005 qfull 00820 1 3 0 easy math: main exception to the 1st order DE rule
4. First order (ordinary) differential equations that are autonomous (meaning they have no explicit

dependence on the independent variable) can only have stationary points at infinity (i.e., plus or minus
infinity) and each such stationary point corresponds to a static solution. Hereafter for brevity, we call
such differential equations 1st order DEs and the rule they obey the 1st order DE rule. The form of
these 1st order DEs is

x′ = f(x) ,
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where x is the dependent variable and t is the independent variable and we assume f(x) is infinitely
differentiable. There are exceptions to the 1st order DE rule. The ones known to yours truly are of the
form

x′ = ±[g(x)]P ,

where P = (1 − 1/n) with n ∈ [2,∞) and we assume g(x) is infinitely differentiable with respect to x.
Note g(x) may go negative as a function of x, but we assume it does not negative as function of t at
stationary points. The most obvious and most important exception is for n = 2 (i.e., P = 1/2) which
gives

x′ = ±
√

g(x) ,

which is exampled by the Friedmann equation. In fact for n ≥ 3, yours truly know of no interesting
cases at all. There may other exceptions to the 1st order DE rule yours truly knows not of. In this
problem, we only treat the cases that obey the 1st order DE rule.

NOTE: There are parts a,b,c,d,e.

a) Given xi (or in the time variable ti) is a stationary point of x′ = ±
√

g(x) (i.e., x′(xi) = ±
√

g(xi) =

±
√

g[x(ti)] = 0), prove without words that x′′(xi) 6= 0 for g(xi) 6= 0.

b) What does the part (a) answer imply about xi? What does the part (a) answer imply about xi

given the sign of dg/dx(xi)?

c) Given (dg/dx)(xi) = 0, prove by induction that for general n ∈ [1∞] that x(n)(xi) = 0. Hint:
Consider x(4)(xi) = 0 as step 1 (i.e., the base case) of the proof. Note that the right-hand side of
the expressions in the proof will always have a derivative of x two orders lower than the left-hand
side.

d) Given (dg/dx)(xi) = 0, what does the part (c) answer imply about xi?

e) Given (dg/dx)(xi) = 0, and therefore there is a static solution x = xi for all time t, we can consider
what the lowest order solution is for a small perturbation from the static solution. The expansion
of the differential equation in small ∆x = x − xi is

d∆x

dt
= ±

√

√

√

√

∞
∑

k=ℓ

∆xk

[

dkg

dxk
(xi)

]

,

where ℓ is the lowest power for which there is a nonzero coefficient (dℓg/dxℓ)(xi). What possible
signs can ∆x when ℓ is even and (dℓg/dxℓ)(xi) > 0? What possible signs can ∆x when ℓ is even
and (dℓg/dxℓ)(xi) < 0? What possible signs can ∆x when ℓ is odd?

SUGGESTED ANSWER:

a) Behold:

1) x′ = ±√
g 2) x′′ =

1

2

1

(±√
g)

dg

dx
x′ 3) x′′ =

1

2

1

(±√
g)

dg

dx
(±√

g)

4) x′′ =
1

2

dg

dx
5) x′′(xi) =

1

2

dg

dx
(xi) 6= 0 ,

given that g(xi) 6= 0.

b) The point xi (or ti in the time variable) is a stationary point of x(t). If dg/dx(xi) is
positive/negative, the stationary point is a minimum/maximum.

c) From part (a), we obtain

1) x(3) =
1

2

d2g

dx2
x′ 2) x(4) =

1

2

[

d3g

dx3
(x′)2 +

d2g

dx2
x′′

]

,

where expressions (1) and (2) are zero for x = xi since x′(xi) = 0 by hypothesis and x′′(xi) = 0
by part (a) plus the hypothesis that (dg/dx)(xi) = 0. Expression (1) is actually the first step
of the proof since it implies every higher derivative x(n) can be obtained if you know all the
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derivatives between x(1) and x(n−2). In any case, we explicitly differentiate expression (1)
(n − 3) times to obtain

x(n) =
1

2

[

dn−1g

dxn−1
(x′)n−2 + . . . +

d2g

dx2
(x′)(n−2)

]

.

All the terms on the right-hand side have factors of (x′)j with j ∈ [1, n − 2]. As the second
step for the proof, we assume all (x′)j(xi) = 0 for j ∈ [1, n − 2]. The third step for the proof
is by noting that given the first two steps the last expression gives x(n)(xi) = 0 for n ∈ [1,∞].

d) Since x(n)(xi) = 0 for n ∈ [1,∞], x(t) must be constant to ±∞ with value xi (i.e., must be
a static solution xi) or it is asymptotically constant at one of ±∞ where it is asymptotic to
asymptote x = xi.

e) When ℓ is even and (dℓg/dxℓ)(xi) > 0, ∆x can be either positive or negative. This is actually
the case for small perturbations from the Einstein universe and the radiation-positive curvature-
Λ universe (which is the radiation analogue to the Einstein universe which is the matterpositive
curvature-Λ universe).

When ℓ is even and (dℓg/dxℓ)(xi) < 0, there are no possible perturbation solutions for
real numbers. There is just the static solution itself isolated in solution land. An example of
this case is when g(x) = −∆x2 which implies ℓ = 2

When ℓ is odd and (dℓg/dxℓ)(xi) > 0, we can only have ∆x > 0. An example of this case
is when g(x) = ∆x3 which implies ℓ = 3.

When ℓ is odd and (dℓg/dxℓ)(xi) < 0, we can only have ∆x < 0. An example of this case
is when g(x) = −∆x3 which implies ℓ = 3.

Redaction: Jeffery, 2018jan01

005 qfull 00910 1 3 0 easy math: logistic function
5. The logistic function (called that for a darn good reason) turns up in many contexts looking like:

f(x) =















fM

1 + e−r(x−x0)
=

fM

1 + (fM/f0 − 1)e−rx
in general form;

1

1 + e−x
=

ex

ex + 1
=

1

2
[tanh(x/2) + 1] in natural or reduced form.

In this question, we only use the natural form for simplicity and elegance.
There are parts a,b,c,d. NOTE: This question has MULTIPLE PAGES on an exam.

a) Determine f ′ (which is, in fact, called the logistic distribution), f ′′ (also write it as an explicitly
even function which it is), the antiderivative of f (easy if you write f in terms of ex), and the
integral of f ′ from −x to x. Use the natural form of the function.

b) Determine stationary points of f and f ′ and the values of f and f ′ at those points. Use the natural
form of the function.

c) The logistic function can be used as a smooth replacement for the Heaviside step function:

H(x) =

{

0 x < 0;
1/2 x = 0;
1 x > 0.

Show that logistic function becomes the that Heaviside step function with the appropriate limiting
procedure. Hint: This is really easy.

d) The logistic function is actually the solution of a 1st order nonlinear differential equation. This
equation shows up, for example, in population dynamics. Say you have population N that grows
at rate (per population) r with unlimited resources. However, the rate with resources limited by
carry capacity (or maximum population) K is modeled as r(1−N/K) which is zero when N → K.
The growth differential equation for N , sometimes called the Verhulst-Pearl equation, is

dN

dt
= r

(

1 − N

K

)

N ,
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Reduce this equation to natural form and find the solution. Then write the solution out in
population-dynamics form for general initial population N0 at t = 0 and show the small N/K
and t → ∞ asymptotic limiting cases explicitly. Hint: You’ll need a table integral.

SUGGESTED ANSWER:

a) Behold:

f(x) =
1

1 + e−x

f ′(x) =
e−x

(1 + e−x)2
=

1

(ex/2 + e−x/2)2
=

(

1

4

) [

1

cosh2(x/2)

]

≥ 0 which is the logistic distribution;

f ′′(x) =
2e−2x

(1 + e−x)3
− e−x

(1 + e−x)2
=

e−x(e−x − 1)

(1 + e−x)3
≤ 0

∫

f(x) dx =

∫

ex

1 + ex
dx = ln(1 + ex)

∫ x

−x

f ′(x) dx =
1

1 + e−x
− 1

1 + ex
=

ex/2

ex/2 + e−x/2
− e−x/2

ex/2 + e−x/2
= tanh(x/2) =

{

1 for x = ∞;
0 for x = 0.

b) Behold:

f(x) =















1

1 + e−x
in general;

0 for f minimum at x = −∞;

1 for f maximum at x = ∞;

f ′(x) =































e−x

(1 + e−x)2
=

1

(ex/2 + e−x/2)2
≥ 0 in general;

0 for f stationary points at x = ±∞;

0 for f ′ minima at x = ±∞;
1

4
for f ′ maxima at x = 0;

f ′′(x) =







e−x(e−x − 1)

(1 + e−x)3
≤ 0 in general;

0 for stationary points at x = 0 and x = ±∞;

c) Behold:

lim
r→∞

f(x) = lim
r→∞

1

1 + e−rx
=

{

0 x < 0;
1/2 x = 0;
1 x > 0

}

= H(x) .

d) Let x = N/K and τ = rt. The Verhulst-Pearl equation now reduced form and solution follow:

dx

dτ
= x(1 − x)

dx

x(1 − x)
= dτ

ln

(

x

1 − x

)

= τ − C
x

1 − x
= Ceτ x(1 + Ceτ ) = Ceτ x =

1

1 + Ce−τ

N =















K

1 + (K/N0 − 1)e−rt
in general;

N0e
rt for N0/K < N/K << 1 which is exponential growth;

K[1 − (K/N0 − 1)e−rt] asymptotically as t → ∞.

Redaction: Jeffery, 2018jan01

005 qfull 00950 1 3 0 easy math: The matter-positive-curvature universe
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Extra keywords: Need to rewrite in scaled form throughout, but no time 2023nov26.
6. The Friedmann equation is

H2 =

(

ȧ

a

)2

=
8πG

3
ρ − k

a2
+

Λ

3

(Li-55). Let’s consider the matter-positive-curvature universe (i.e., a universe with ρ ∝ 1/a3, k > 0,
Λ = 0). The geometry of this universe is the surface of hypersphere (specifically a 3-sphere) which is
finite, but unbounded. Here, however, we are only interested in the solution for cosmic scale factor a,
not in the geometry.

There are parts a,b,c,d,e.

a) Rewrite the Friedmann the form ȧ = f(a) with Λ = 0, ρ = ρM(aM/a)3. We define aM to be the a
value for the minimum density ρM that is allowed by the differential equation. Determine the value
for k in terms of the minimum density ρM. What is aM in the solution a(t)?

b) Given that the Friedmann equation is of the form f ′ = ±
√

g(f) and that for small a we must
have the Einstein-de-Sitter universe behavior (a ∝ t2/3 assuming a(t = 0) = 0), describe what the
solution must look like qualitatively.

c) Rewrite the Friedmann equation in natural units:
√

k t → t and a/aM → a.

d) An approximate simple analytic solution for the Friedmann equation (in natural units) suggested
by part (b) is

a = sin2/3

(

π

2

t

tM

)

,

where tM is the location of the maximum. This approximate solution is an interpolation formula
since it gives the right behavior at the endpoints and the maximum. But tM has to be determined.
What are natural guesses for tM? Now use a 1-step Euler method to obtain a reasonable estimate
of a good value for the approximate solution.

e) Actually, an exact analytic solution can be obtained to the differential equation in terms of a new
independent variable η. One needs a trick:

ȧ =
da

dη
η̇ =

da

dη

1

a
with requirement η̇ =

1

a
.

The trick gets rid of an a in a denominator, but in the way that clairvoyance says is the Tao. Using
the trick solve for a(η) using a table integral and with the constant of integration chosen so that
a(η = 0) = 0. Then find t(η). What the limits of η? Why can we write an analytic formula for
a(t)? but it has no analytic form

SUGGESTED ANSWER:

a) Behold:

ȧ = ±
√

8πG

3
ρMa2

M

(aM

a

)

− k

k =
8πG

3
ρMa2

M ,

which has the right dimensions the adopted k: i.e., the inverse square of time like Gρ. Note
the minimum density occurs, of course, when the radicant equals zero. The aM quantity is
the maximum of a(t). Any bigger value makes the radicand negative and gives a complex
differential equation.

b) Given the form of the differential equation, the solution must be symmetric about the single
stationary point (assuming the solution is not a periodic function) which is where the solution
changes branches from the f ′ =

√

g(f) case to the f = −
√

g(f). The stationary point is, in
fact, where the radicand is zero: i.e., where a = aM. We will label this point tM. Since a can
go to zero (where it will have an infinite slope, but that’s OK), but not to infinity for a real
solution, the stationary point must be maximum which we already inferred in part (a). Given
the Einstein-de-Sitter universe behavior, we must have a ∝ t2/3 for t → 0 and by symmetry
a ∝ (2tM − t)2/3 for t → 2tM. There is no real solution for a beyond the endpoints t = 0
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and t = 2tM. Since the differential equation has a simple structure, we can expect a simple
structure for the soltuion a(t) with no funny wiggles, etc. Give the solution near the endpoints
bulges upward relative to a straight line and no funny wiggles, etc., the solution is probably a
simple convex-up symmetric curve.

c) Behold:

ȧ = ±
√

1

a
− 1 .

d) Well since the solution exists only over a limited range and we are using natural units, tM = 1
is one natural guess. Another natural guess given the form of the approximate solution is
tM = π/2.

Applying the 1-step Euler method to the differential equation equation gives

1

tM
=

√

1

aE
− 1 ,

where the left-hand side is the slope of the line replacement for the solution between t = 0 and
tM and aE has to be estimated to give a good result. The ideal choice of aE would be the one
that makes the slope given by the right-hand side exactly equal to the slope of the correct line
replacement for the solution. But don’t know what that ideal choice is. The natural choice
if we knew nothing of the solution is aE = 1/2. But since the solution is convex-up, maybe
aE = 2/3 or aE = 3/4 could be better. Let’s try them all the suggested possibilities:

tM =



























1
√

(1/aE) − 1
in general;

1 for aE = 1/2;√
2 = 1.414 . . . < π/2 aE = 2/3;√
3 = 1.732 . . . > π/2 aE = 3/4.

Since the two possibly better 1-step Euler method values give tM values close to π/2 (a natural
guess for tM) and their average approximately equals it ((

√
2 +

√
3)/2 = 1.5731 . . . ≈ π/2 =

1.5707963 . . .), we’ll adopt tM = π/2. In fact, this is fortuitiously exactly correct.

e) Behold:

ȧ =
da

dη
η̇ =

da

dη

1

a
=

√

1

a
− 1

da

dη
=

√

a − a2
da√

a − a2
= dη − cos−1(2a − 1) = η + C

a =
1

2
[1 + cos(η + C)] a =

1

2
[1 + cos(η + π)] a =

1

2
[1 − cos(η)] .

Now

ȧ =
da

dt
=

da

dη

1

a
dt = a dη t =

∫ η

0

1

2
[1 − cos(η′)] dη′ =

1

2
[η − sin(η)] .

So finally we obtain

a =
1

2
[1 − cos(η)] t =

1

2
[η − sin(η)]

with limits η ∈ [0, 2π].
The function t(η) cannot be analytically inverted. So an analytic a(t) is not possible.

However, an analytic t(a) exists:

a =
1

2
[1 − cos(η)] η = cos−1(1 − 2a) t =

1

2

{

cos−1(1 − 2a) − sin
[

cos−1(1 − 2a)
]}

.

Actually, what is analytic or not depends on definition. If we define η(t) to be analytic, then
an a(t) analytic exists by definition. But by convention, only common transcental functions
are defined to be analytic: so we don’t define η(t) to be analytic.
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Fortran-95 Code
print*

piL2=0.5_np*acos(-1.0_np)

a=0.5_np*(sqrt(2.0_np)+sqrt(3.0_np))

print*,’piL2,a’

print*,piL2,a

! 1.57079632679489661926 1.57313218497098617117

Redaction: Jeffery, 2018jan01


