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Cosmology NAME:

Homework 4 All: The Geometry of the Universe

004 qmult 00120 1 4 1 easy deducto-memory: factoring the curvature term
1. The Friedmann equation written in term of density parameter components with some specializations is

H2 =

(

ȧ

a

)2

= H0 (Ω + Ωk + ΩΛ)

where H is the Hubble parameter, H0 is the Hubble constant, Ω is the sum of all density components
excluding the curvature and Λ components,

Ωk = − kc2

H2
0a2

is the curvature component, and

ΩΛ =
Λ

3H2
0

=
Λ/(8πG)

3H2
0/(8πG)

=
ρΛ

ρcrit,0

is the Λ component (i.e., the cosmological constant component). At the fiducial cosmic present,

Ωk,0 = − kc2

H2
0a2

0

and we are free to factorize k/a0 as we like. In fact, the Robertson-Walker metric choice is to make k = 0
for flat space (i.e., Euclidean space), k = 1 for positive curvature space (i.e., hyperspherical space), and
k = −1 for negative curvature space (i.e., hyperbolical space). For non-flat space, this implies a definite
physical scale for a0:

a0 =
c/H0
√

|Ωk|
=

(4.2827 . . .Gpc)/h70
√

|Ωk|
=

(13.968 . . .Gly)/h70
√

|Ωk|

(where h70 = H0/[70(km/s)/Mpc]) which can be called the curvature radius of the universe. Note for
cosmic present, by construction Ω0 +Ωk,0 +ΩΛ = 1, and so Ωk,0 = 1−Ω0−ΩΛ, and so Ωk,0 follows if all
other density parameters are known by assumption or a fit to data. Formally, the Gaussian curvature
radius is defined

RG =
a0√
k

which is imaginary for k = −1 (CL-12). Tristram et al. (2023) give Ωk = −0.012(10) consistent with 0,
and so consistent with flat space. Assuming Ωk = −0.01, what is the curvature radius and how does that
compare with the radius of the observable universe according to the Λ-CDM model 14.25 Gpc which
must be approximately true whatever the correct universe model is (Wikipedia: Observable universe).

a) 43 Gpc; large. b) 430 Gpc; large. c) 43 Gpc; small. d) 430 Gpc; small.
e) 0.043 Gpc; small.

SUGGESTED ANSWER: (a) Behold:

a0 =
(4.2827 . . .Gpc)h70

√

|Ωk|
=

(4.2827 . . .Gpc)h70

0.1
≈ 43Gpc .

Wrong answers:

b) You’ve divided by 0.01.

Redaction: Jeffery, 2008jan01

004 qmult 00150 1 1 2 easy memory: proper distance to the antipodes point
2. For a positive curvature space (i.e., k = 1 space), the proper distance to the antipodes point according

to the Robertson-Walker metric formulation at cosmic present is
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a) a0. b) πa0. c) 2πa0. d) a0/2. e) a0/4.

SUGGESTED ANSWER: (b)
The Robertson-Walker metric is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

,

where ds2 = dτ2 is the spacetime interval and also the squared proper time differential in the
convention adopted here. The a(t) is the physical curvature radius and r is the conventional
dimensionless comoving coordinate and t is cosmic time. The alternative conventional dimensionless
comoving coordinate is χ though this symbol may just be the particular choice of CL-11. Note

r =







sin χ for k = 1 (positive curvature);
χ for k = 0 (flat space);
sinhχ for k = −1 (negative curvature)

and

dr =







cosχ dχ for k = 1 (positive curvature);
dχ for k = 0 (flat space);
coshχ dχ for k = −1 (negative curvature)

implying

dχ =
dr√

1 − kr2

where we have used the hyperbolic identity cosh2 − sinh2 = 1 (Wikipedia: Hyperbolic functions:
Useful relations).

For positive curvature space (i.e., k = 1 space) when χ = π, the surface area of a 2-sphere
surrounding the origin goes to zero since sin(π) = 0. That must be the antipodes point from the
origin. Therefore πa0 is the proper distance to the origin at cosmic present.

Wrong answers:

a) A nonsense answer.

Redaction: Jeffery, 2008jan01

004 qmult 00180 1 1 4 easy memory: geodesic is a stationary path
3. A geodesic is a between two points in some geometry. It is not in general a global

minimum path or a global maximum . However, a sufficiently small segment is always the
shortest distance between points in that segment.

a) non-stationary path b) straight line c) great circle d) stationary path
e) small circle

SUGGESTED ANSWER: (d)

Wrong answers:

a) A nonsense answer.

Redaction: Jeffery, 2008jan01

004 qmult 00200 1 1 3 easy memory: general metric
4. The metric (which in relativity is usually called the spacetime interval) in general is

ds2 = gµν dxµ dxµ

where gµν is the or sometimes just the metric in another meaning of the term. Note
Einstein summation on repeated indices is used.

a) Lorentz tensor b) geodesic c) metric tensor d) gravity tensor
e) stress-energy tensor

SUGGESTED ANSWER: (c)
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Wrong answers:

a) This is a special case.

Redaction: Jeffery, 2008jan01

004 qmult 00220 1 4 5 easy deducto-memory: Robertson-Walker metric identified
5. “Let’s play Jeopardy! For $100, the answer is:

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

.

What is the metric, Alex?

a) Einstein-Hilbert b) de-Sitter-Schwarzschild c) Eddington-Lemâıtre
d) Milne-McCrea e) Robertson-Walker

SUGGESTED ANSWER: (e)

Wrong answers:

a) As Lurch would say AAAARGH.
c) Alexander Friedmann and Georges Lemâıtre independently derived the Robertson-Walker

metric in the 1920s and it is sometimes called the Friedmann-Lemâıtre-Robertson-Walker
metric (FLRM metric), but that is too longwinded to say. Robertson and Walker in the
1930s generalized the derivation.

Redaction: Jeffery, 2008jan01

001 qmult 00240 1 1 3 easy memory: radial and transverse proper distances
6. The Robertson-Walker metric is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

,

where ds2 = dτ2 is the spacetime interval (and also the squared proper time differential in the convention
adopted here) and dt is differential cosmic time. The a(t) is the physical curvature radius and r is the
conventional dimensionless comoving coordinate and t is cosmic time. The alternative conventional
dimensionless comoving coordinate is χ though this symbol may just be the particular choice of CL-11.
Note

r =







sin χ for k = 1 (positive curvature);
χ for k = 0 (flat space);
sinhχ for k = −1 (negative curvature)

and

dr =







cosχ dχ for k = 1 (positive curvature);
dχ for k = 0 (flat space);
coshχ dχ for k = −1 (negative curvature)

implying

dχ =
dr√

1 − kr2

where we have used the hyperbolic identity cosh2 − sinh2 = 1 (Wikipedia: Hyperbolic functions: Useful
relations).

The differential radial proper distance is

dDproper,radial = a(t)

(

dr√
1 − kr2

)

= a(t) dχ .

The differential transverse proper distance dDproper,transverse is:

a) 4π[a(t)r]2. b) a(t)r. c) a(t)r
√

dθ2 + sin2 θ dφ2. d) πa(t). e) 2πa(t).

SUGGESTED ANSWER: (c)
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Wrong answers:

a) A nonsense answer.

Redaction: Jeffery, 2008jan01

004 qfull 00350 1 3 0 easy math: hyperspherical geometry case of Robertson-Walker metric
7. The Robertson-Walker metric in standard form is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

,

where ds is the differential spacetime interval (also equal to dτ the proper time in the present convention),
dt is the differential cosmic time interval, the coordinates are for an arbitrary origin in the homogeneous
and isotropic spacetime of the Robertson-Walker metric, θ and φ are the ordinary polar coordinates, r
a dimensionless (i.e., unitless) comoving coordinate, t is cosmic time, a(t) is the cosmic scale factor with
dimensions of length, and k = 0 for Euclidean space (i.e., flat space), k = 1 for hyperspherical space (i.e.,
positive curvature space with the geometry of the surface of a 3-sphere which is sphere in 4-dimensional
Euclidean space: see Wikipedia: n-sphere) and k = −1 for hyperbolical space (i.e., negative curvature
space). Note an ordinary sphere is a 2-sphere in math jargon. For ds2 > 0 / ds2 = 0 / ds2 < 0, the
interval is timelike / lightlike (or null) / spacelike (CL-10; Carroll-9).

For non-flat space, the Robertson implies a definite physical scale for a0:

a0 =
c/H0
√

|Ωk|
=

(4.2827 . . .Gpc)/h70
√

|Ωk|
=

(13.968 . . .Gly)/h70
√

|Ωk|

(where h70 = H0/[70(km/s)/Mpc]) which can be called the curvature radius of the universe. Note
for cosmic present, by construction Ω0 + Ωk,0 + ΩΛ = 1, and so Ωk,0 = 1 − Ω0 − ΩΛ, and so Ωk,0

follows if all other density parameters are known by assumption or a fit to data. The quantity
RG = a0/

√
k is called the Gaussian curvature radius (CL-12). It is imaginary for k = −1. For

k = 0, there is no physically determined a0 value and one can set it for convenience: e.g., a0 = 1 Gpc or
a0 = c/H0 = [4.2827 . . .)/h70] Gpc.

The radial proper distance DP to radial comoving distance r is given by

DP = a(t)











sin(χ) k = 1 with χ ∈ [0, π];

χ k = 0 with χ ∈ [0,∞];

sinh(χ) k = −1 with χ ∈ [0,∞],

where r has been parameterized by χ the alternative comoving coordinate:

r =











sin(χ) k = 1 with χ ∈ [0, π];

χ k = 0 with χ ∈ [0,∞];

sinh(χ) k = −1 with χ ∈ [0,∞],

dr =











cos(χ) dχ =
√

1 − r2, dχ k = 1 with χ ∈ [0, π];

dχ k = 0 with χ ∈ [0,∞];

cosh(χ) dχ =
√

1 + r2 dχ k = −1 with χ ∈ [0,∞],

where we have used the hyperbolic function identity cosh2(χ) − sinh2(χ) = 1. The transverse proper
distance Dp,transverse at radial comoving distance r is given by

Dp,transverse = a(t)r

√

dθ2 + sin2 θ dφ2 .

Let’s just consider the spatial geometry for the hyperspherical case (k = 1). Now we have the
proper distance DP formula

dD2
P = a(t)2

[

dr2

1 − r2
+ r2(dθ2 + sin2 θ dφ2)

]

= a(t)2
[

dχ2 + sin2(χ)(dθ2 + sin2 θ dφ2)
]

.

NOTE: There are parts a,b. This question has MULTIPLE PAGES on an exam.
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a) What is the general formula for circumference of a circle C at r in terms of r and χ? Sketch plot
of C as a function of χ for all cases of k.

b) Mentally integrate over all solid angle to find the proper surface area A of the curved-space 2-sphere
surrounding the origin at comoving coordinate r. This area is analogous to the circumference of a
small circle on a ordinary sphere at polar angle θ. Sketch plot of A as a function of χ for all cases of
k. Hint: dθ2 + sin2 θ dφ2) is a differential path distance creating using the differential Pythagorean
theorem and not a differential piece of solid angle.

c) The differential volume for the sphere is dV = A(χ)a dχ. For all k, determine V (χ) small χ and
then for general χ. What is the maximum value of V (χ) for k = 1? Hint: You will need the
identities sin2(x) = (1/2)[1 − cos(2x)] and sinh2(x) = (1/2)[cos(2x) − 1].

d) For the k = 1 case, what angles from the origin do radial geodesics lead to the antipodal point
(i.e., the antipode)? How far in proper distance is it from the origin to the antipodal point along a
radial geodesic? How far in proper distance to make the geodesic round trip from origin to origin?

SUGGESTED ANSWER:

a) Behold:

C = 2πa(t)r = 2πa(t)











sin(χ) k = 1 with χ ∈ [0, π];

χ k = 0 with χ ∈ [0,∞];

sinh(χ) k = −1 with χ ∈ [0,∞].

You will have imagine the plot. However, for the case of k = 1, the area grows to a maximum
a χ = pi/2 and then falls to zero at the antipodal point where χ = π.

b) The differential piece of solid angle is dθ sin θ dφ which integrates immediately to 4π just as in
ordinary space. The differential piece of proper area is (ar)2dθ sin θ dφ. Therefore the surface
area of a sphere surrounding the origin is

A(r) = A(χ) = 4π(ar)2 = 4πa2











sin2(χ) k = 1 with χ ∈ [0, π];

χ2 k = 0 with χ ∈ [0,∞];

sinh2(χ) k = −1 with χ ∈ [0,∞].

You will have imagine the plot. However, for the case of k = 1, the area grows to a maximum
a χ = pi/2 and then falls to zero at the antipodal point where χ = π.

c) For small χ,

V (χ << 1) =

∫ χ

0

A(χ′)a dχ′ = 4πa3

∫ χ

0

χ′2 dχ′ =
4π

3
(aχ)3 ,

which is just what you would get for flat space for all χ. For general χ,

V (χ) =

∫ χ

0

A(χ′)a dχ′ = 4πa3

∫ χ

0

dχ′











sin2(χ) k = 1 with χ ∈ [0, π];

χ2 k = 0 with χ ∈ [0,∞];

sinh2(χ) k = −1 with χ ∈ [0,∞];

= 4πa3

∫ χ

0

dχ′



















1

2
[1 − cos(2χ′)] k = 1 with χ ∈ [0, π];

χ2 k = 0 with χ ∈ [0,∞];

1

2
[cosh(2χ′) − 1] k = −1 with χ ∈ [0,∞];

= 4πa3































1

2

[

χ − 1

2
sin(2χ′)

]

k = 1 with χ ∈ [0, π];

1

3
χ3 k = 0 with χ ∈ [0,∞];

1

2

[

1

2
sinh(2χ′) − χ

]

k = −1 with χ ∈ [0,∞];
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= 4πa3































π

2
= 2π2a3 = (19.7392 . . .)a3 k = 1 with χ = π];

π3

3
=

4π4

3
a3 = (129.878788 . . .)a3 k = 0 with χ = π;

1

2

[

1

2
sinh(2π) − π

]

= (821.406 . . .)a3 k = −1 with χ = π;

So for the hyperspherical space (k = 1) the total volume is 2π2a3. Note: Fortran-95 Code
pi=acos(-1.0_np)

pi=3.14159265358979323846264338327950288419716939937510

23456789a123456789b123456789c123456789d123456789e1

v1=2.0_np*pi**2

v0=(4.0_np/3.0_np)*pi**4

vn=4.0_np*pi*0.5_np*(0.5_np*sinh(2.0_np*pi)-pi)

print*,’v1,v0,vn’

print*,v1,v0,vn

! 19.739208802178717239 129.87878804533658300 821.40618335325637295

a) Radial geodesics from the origin lead to the antipodal point for all angles: all roads lead to
Rome. This behavior is analogous to following meridians from the pole of an ordinary sphere.
The proper distance along a geodesic from the origin is

DP =







aχ in general for χ ∈ [0, π];
πa for χ = π;
2πa for a round trip from the origin to the origin.

So the proper distance to the antipodal point is πa and the proper distance for the round trip
2πa. This is analogous to the distances on a ordinary sphere (i.e., a 2-sphere).

Redaction: Jeffery, 2018jan01

004 qfull 00400 1 3 0 easy math: prove Hubble’s law from the RW metric
8. The Robertson-Walker metric in standard form is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

.

Note that r is the radial comoving coordinate chosen so that r is proportional to proper distance in the
transverse direction (i.e., perpendicular to the radial direction).

Prove Hubble’s law in general form from the Robertson-Walker metric: i.e., prove

vR = HDP ,

where vR = ḊP is the recession velocity, H = ȧ/a is the Hubble parameter, and DP is proper (radial)
distance. Note proper distance is distance that can be measured at one instant in cosmic time using a
ruler: i.e., with dt = 0, it is

DP =

∫

√

−ds2 .

The general form of Hubble’s law is an exact result, but alas containing two quantities that are not
direct observables, vR and DP, except asymptotically as z → 0 or, in other words, in the limit where
the 1st-order-in-small-z formulae can be treated as exact. The observational Hubble’s law is

vred = H0DP,1st ,

where vred = zc is redshift velocity (a direct observable) and DP,1st is proper distance to 1st order in small
z as measured from luminosity distance or angular diameter distance (which are direct observables).
The observational Hubble’s law is very plausible a priori, but a formal proof is left to a later problem.

SUGGESTED ANSWER:
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For a proper distance along a radial direction we have

DP = a(t)

∫ r

0

dr′√
1 − kr′2

= a(t)f(r) ,

where f(r) is just the displayed integral which is, in fact, time independent. Thus

vR = ḊP = ȧf(r) .

Dividing the second by the first expression and rearranging, we get

vR =
ȧ

a
DP = HDP , or, compactly, vR = HDP QED.

Redaction: Jeffery, 2018jan01

004 qfull 00500 1 3 0 easy math: cosmological time dilation and cosmological redshift
9. The Robertson-Walker metric in standard form is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

.

Note that r is the radial comoving coordinate chosen so that r is proportional to proper distance in the
transverse direction (i.e., perpendicular to the radial direction).

NOTE: There are parts a,b,c. This question has MULTIPLE PAGES on an exam.

a) For light signals coming radially from remote source prove with few words the cosmological time-
dilation effect (CL-16,19):

dt

a(t)
=

dt0
a0

or
dt0
dt

=
a0

a(t)
,

where t is the cosmic time of emission, t0 is the cosmic time of observation (i.e., the cosmic present),
and a0 = a(t0).

b) Prove without words the cosmological redshift formula 1 + z = a0/a(t).

c) The cosmological redshift formula is a very useful connecting the direct observable cosmological
redshit z and the scaling up of the universe to since a light signal was emitted a0/a(t). Why can’t
it be used to directly determing a(t)?

SUGGESTED ANSWER:

a) The interval for a light signal is lightlike and so ds2 = 0 for between the endpoints of the signal.
Thus,

−
∫ 0

r

dr′√
1 − kr′2

=

∫ r

0

dr′√
1 − kr′2

= f(r) =

∫ t0

t

c dt′

a(t′)
=

∫ t0+δt0

t+δt

c dt′

a(t′)
∫ t0

t

c dt′

a(t′)
=

∫ t0+δt0

t+δt

c dt′

a(t′)
=

∫ t0

t

c dt′

a(t′)
+

∫ t0+δt0

t0

c dt′

a(t′)
−
∫ t+δt

t

c dt′

a(t′)
∫ t+δt

t

c dt′

a(t′)
=

∫ t0+δt0

t0

c dt′

a(t′)

dt

a(t)
=

dt0
a0

or
dt0
dt

=
a0

a(t)
,

where we have used the fact that f(r) is independent of cosmic time and we have taken the
differential limit to get the last expressions.

b) Behold:

dt

a(t)
=

dt0
a0

1

νa(t)
=

1

ν0a0

λ

a(t)
=

λ0

a0

λ0

λ
=

a0

a(t)

z =
λ0 − λ

λ
=

a0

a(t)
− 1 1 + z =

a0

a(t)
. QED
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c) The cosmic time of emission t is not a direct observable. It would be great if galaxies had clock
faces showing cosmic time, but they don’t.

Redaction: Jeffery, 2018jan01

004 qfull 00610 1 3 0 easy math: Robertson-Walker metric and observables
10. The basic Λ-CDM model has its cosmic scale factor a(t) fully specified via the Friedmann equation (FE)

by the Hubble constant H0 and three density parameters: i.e., ΩR,0 (”radiation”), Ωm,0 (”matter”),
and ωΛ (cosmological constant or constant dark energy). The obtaining the parameters is a major
observational goal. In principle, only 3 are independent, but observational uncertainties make obtaining
all 4 somewhat independently useful goal.
If the FE model is not flat, the Friedmann equation (in its derivation from general relativity) plus
Robertson-Walker metric tells us that the physical scale of the of FE models at cosmic present t0 is
given by

a0 =
c/H0

√

|Ω0 − 1|
=

c/H0
√

|Ωk,0|
=

(4.2827 . . .Gpc)/h70
√

|Ωk,0|
=

(13.968 . . .Gly)/h70
√

|Ωk|
,

where Ω0 is the sum of all density parameters, except Ωk,0, and h70 = H0/[70 (km/s)/Mpc] is the
reduced Hubble constant which must be 1 to within a few percent. If the FE model is flat, there is no
physical scale for the model and a0 can be chosen arbitrarily or set to dimensionless 1 in which case the
comoving distances r have length units and are equal to the proper distance of the cosmic present. In
all cases, the proper distance to an object at comoving distance r is

DP = a0

∫ r

0

dr√
1 − kr2

= a0f(r) ,

where r is comoving coordinate independent of time and k = 1 for hyperspherical space, k = 0 for
Euclidean space (i.e., flat space in which case f(r) = r), and k = −1 for hyperbolical space. The
variable k is called the curvature.

One way to test a FE model or fit it to observations is to plot some observable cosmic distance
measure DC for objects versus their cosmological redshifts z (which are the only easily obtained direct
observables) and then compare to the theoretical cosmic distance measure DC plotted as a function of
z. The two best known observable cosmic distance measures (other than cosmological redshift z) are the
luminosity distance DL and the angular diameter distance DA both of which have explicit dependence
on z, but also depend on z via the comoving coordinate r(z) whose z dependence is an observational
constraint, not an intrinsic dependence.

NOTE: There are parts a,b,c,d. This question has MULTIPLE PAGES on an exam.

a) Recall the Robertson-Walker metric in standard form is

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

.

For a light signal traveling from a source at comoving coordinate r, time t, and cosmological redshift
z to the origin (i.e., us) at time t0 along a radial path, derive an equation from the Robertson-
Walker metric relating spatial integral f(r) to time integral χ(t) (which is actually an alternative
comoving coordinate though the symbol χ is probably not a standard for it). The left-hand side
should depend only on parameters r and k and the right-hand side only on t and t0. Do NOT use
any words: just the expressions.

b) Formal expressions for r, t, and lookback time tLB for a light signal are, respectively,

r = f−1 [χ(z)] = f−1 {χ [t(z)]} = f−1

{

χ

[

t

(

a0

1 + z

)]}

, t = t(z) = t

(

a0

1 + z

)

,

and
tLB = −∆t = −[t(a) − t0] ,

where we have used the cosmological redshift formula

1 + z =
a0

a(t)
.
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Note that f(r) = r and f−1(r) = r if the curvature k = 0.
In order to obtain the proper distance DP = a0f(r) = a0χ(z) explicitly, from the

foregoing formulae, we need to specify an FE model. In general, only numerical results can be
obtained. However, the de-Sitter universe (with k general) allows explicit simple formulae for some
cosmological distance measures. For the de-Sitter universe,

a(t) = a0e
H0∆t ,

where in this case the Hubble constant H0 =
√

Λ/3 is time-independent.
Determine in order the explicit formulae for ∆t(z), tLB(z), χ(z), radial proper distance DP,

and recession velocity vR(z) for the de-Sitter universe.
What is odd about tLB relative to the case of a cosmological model with a point origin (AKA

Big Bang singularity)?

c) What is the explicit expression for the deceleration parameter q0 = −ä0a0/ȧ2
0 for the de Sitter

universe?

d) The formal expressions for the standard cosmological distance measures (expressed in observational
form if it exists and is distinct from theoretical forms and then in the theoretical forms) are as
follows:

Cosmological redshift: z =
λ0 − λ

λ
=

a0

a(t)
− 1 1 + z =

a0

a(t)

Lookback time: tLB = t0 − t(a) = −∆t

Comoving coordinate r: r = f−1 [χ(z)] = f−1 [χ(t)]

Comoving coordinate χ: χ(z) = χ(t) =

∫ t0

t

c dt

a(t)

Proper distance: DP = a0χ(z) = a0χ(t) = a0f(r)

Recessional velocity: vR = H0DP

Redshift velocity: vred = zc

Luminosity distance: DL =

√

L

4πf
= a0r(1 + z)

Angular diameter distance: DA =
Druler

θ
=

a0r

(1 + z)

Distance-duality relation: DL = DA(1 + z)2 ,

where the distance-duality relation is also called the Etherington reciprocity relation. Determine
special case expressions for the cosmological distance measures above as a functions of z for the
de Sitter universe. Note that some were already determined in part (b) and some already functions
of z. What is odd about DA as z goes to infinity in the case of k = 0?

SUGGESTED ANSWER:

a) Behold:

ds2 = c2 dt2 − a(t)2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

±a(t)

(

dr√
1 − kr2

)

= c dt

−
∫ 0

r

dr√
1 − kr2

=

∫ t0

t

c dt′

a(t′)
∫ r

0

dr√
1 − kr2

=

∫ t0

t

c dt′

a(t′)

f(r) = χ(t) .
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b) Clearly,

∆t =
1

H0

ln

(

a

a0

)

= − 1

H0

ln(1 + z) , and so tLB = −∆t =
1

H0

ln(1 + z) .

With ∆t = t − t0, ∆t0 = 0, and d∆t = dt, we have

χ =
c

a0

∫ 0

∆t

e−H0∆t′ d∆t′ =
c

a0H0

(

1 − e−H0∆t
)

=
c

a0H0

(

1 − a0

a

)

=
zc

a0H0

or, compactly,

χ =
zc

a0H0

.

Thus,

DP = a0χ =
zc

H0

and vR = H0DP = zc = vred .

In this special case, the recession velocity equals the redshift velocity defined by vred = zc.
Note that for the exponential universe, t0 is just time since an arbitrary time zero since

the exponential universe has no point origin (AKA Big Bang sinularity)—it is eternal in both
time directions. So the odd thing about tLB is that it goes to infinity as z goes to infinity
unlike the cosmological models with a point origin where tLB goes to a finite value (denoted
t0) as z goes to infinity.

c) Behold:

q0 = − ä0a0

ȧ2
0

= −H2
0

H2
0

= −1 or, compactly, q0 = −1 .

The deceleration parameter is negative because the exponential universe expansion is positively
accelerating.

d) Behold:

Cosmological redshift: z =
λ0 − λ

λ
=

a0

a(t)
− 1

Lookback time: tLB = t0 − t(a) =
1

H0

ln(1 + z) = −∆t

Comoving coordinate r: r = f−1 [χ(z)] = f−1

(

zc

a0H0

)

Comoving coordinate χ: χ(z) =
zc

H0a0

Proper distance: DP = a0f(r) = a0χ(z) =
zc

H0

Recessional velocity: vR = H0DP = zc

Redshift velocity: vred = zc

Luminosity distance: DL =

√

L

4πf
= a0r(1 + z) = a0f

−1

(

zc

a0H0

)

(1 + z)

Angular diameter distance: DA =
Druler

θ
=

a0r

(1 + z)
= a0f

−1

(

zc

a0H0

)

1

(1 + z)

Distance-duality equation: DL = DA(1 + z)2 .

The odd thing about DA as z goes to infinity for k = 0 is that it goes to a constant c/H0

which is, in fact, the Hubble length. This means the standard ruler goes to a constant angular
diameter as z goes to infinity. The constancy I think this is mostly because you are seeing
the ruler sort of where it was in the past. But note that the luminosity distance continues to
increase, and so that the ruler keeps getting fainter if it is a standard candle too. Note also
that the angular diameter distance is based on the small angle approximation and that might
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fail in some way if the angular diameter distance starts getting smaller with z as it does for
the Λ-CDM model, in fact.

Redaction: Jeffery, 2018jan01

004 qfull 00650 1 3 0 easy math: conformal time and cosmoloigical redshift
11. The alternative comoving coordinate

χ =

∫ t0

t

c dt

a(t)

is also what is called conformal time.
NOTE: There are parts a,b,c,d,f. On an exam, this question has MULTIPLE PAGES.

a) Starting from the scaled Friedmann equation form

(

ȧ

a

)2

= H2
0

(

∑

p

Ωp,0x
−p

)

(where x = a/a0) derive without words an integral formula for χ(x).

b) Now change the integral formula so that we have χ(z).

c) In what limit would χ(z) have an analytic formula?

d) Assuming there is only a single density component with p > 0, derive the exact solution for χ(z).

e) Assuming there is only a single density component with p = 0, derive the exact solution for χ(z).

f) Give the formula for radial proper distance DP with χ(z) expanded into the integral form. Does
DP depend on a0? Give the formula for a0r for all cases of k with χ(z) unexpanded. Does a0r
depend on a0?

SUGGESTED ANSWER:

a) Behold:

1) H0 dt =
da

a
√

∑

p Ωp,0x−p
2)

H0

c

c dt

a
=

da

a2
√

∑

p Ωp,0x−p

3)
H0a0

c

c dt

a
=

dx

x2
√

∑

p Ωp,0x−p
4) χ(x) =

c

H0a0

∫ 1

x

dx̃
√

∑

p Ωp,0x̃−p+4
.

Note for the set of p of {4, 3, 2}, an exact solution exists for the integral. Unfortunately, this
exact solution is not for an especially interesting case.

b) Note

1)
a0

a
= 1 + z 2) x =

1

1 + z
3) dx = − dz

(1 + z)2
.

Thus,
∫ 1

x

dx̃

x̃2
√

∑

p Ωp,0x̃−p
=

∫ z

0

dz̃
√

∑

p Ωp,0(1 + z̃)p
,

and so

χ(z) =
c

H0a0

∫ z

0

dz̃
√

∑

p Ωp,0(1 + z̃)p
.

Note for y = 1 + z, we get

χ(y) =
c

H0a0

∫ y

0

dỹ
√

∑

p Ωp,0ỹp

which for the set of p of {0, 1, 2} has an exact solution for the integral. Unfortunately, this
exact solution is not for an especially interesting case.
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c) In the small z limit where integral for χ(z) could be expanded in small z series. However, the
series probably only converges for the z < 1.

d) Behold:

χ(z) =
c

H0a0

∫ z

0

dz̃
√

(1 + z̃)p
=

c

H0a0

(1 + z̃)−p/2+1

(−p/2 + 1)

∣

∣

∣

∣

z

0

=
c

H0a0

1

(p/2 − 1)

[

1 − 1

(1 + z)p/2−1

]

,

where for interesting cases p > 2.

e) Behold:

χ(z) =
c

H0a0

∫ z

0

dz̃ =
zc

H0a0

which is the de Sitter universe case.

f) Behold:

DP = a0χ(z) =
c

H0

∫ z

0

dz̃
√

∑

p Ωp,0(1 + z̃)p
.

The radial proper distance has no dependence on a0. Behold:

a0r =







a0 sin[χ(z)] for k = 1;
a0χ(z) for k = 0;
a0 sinh[χ(z)] for k = −1.

For k 6= 0, the a0r does depend on a0 except in the limit of z small. For k = 0, the a0 cancels
out just as for DP and in this case DP = a0r = a0χ(z).

Redaction: Jeffery, 2018jan01

004 qfull 00700 1 3 0 easy math: deceleration parameter
12. The theoretical cosmological distance measures to 2nd order in small cosmological redshift z are

conventionally written in terms of the Hubble constant H0 = ȧ0/a0 and the deceleration parameter
q0 = −ä0a0/ȧ2

0 (which is unitless or rather has natural units). In fact in the 1970s, cosmology was
sometimes comically oversimplified as a search for two numbers: H0 and q0 (see A.R. Sandage, 1970,
Physics Today, 23, 34, Cosmology: A search for two numbers). Nowadays, q0 has lost some of its
glamor. It is now not regarded as a basic parameter of cosmological models, but just one of the derived
parameters and its peculiar definition just a historical convention. The fact that the universal expansion
is accelerating makes the deceleration parameter negative which is an incongruity.

There are parts a,b.
NOTE: This question has MULTIPLE PAGES on an exam.

a) Taylor expand a(t) in small ∆t = t − t0 to 2nd order and rewrite the coefficients in terms of H0

and q0. The rewritten expansion should begin a(t) = a0[1 + . . ..

b) Recalling the cosmological redshift formaula 1 + z = a0/a, rewrite the formula from the part (a)
answer as an expansion for z to 2nd order small ∆t. Hint: You will need the geometric series:

1

1 − x
=

∞
∑

ℓ=0

xℓ ,

which converges for |x| < 0 (Ar-279).

c) Now we need to invert the power series for z to find lookback time tLB = t0− t = −∆t to 2nd order
in small z. We will need the power series inversion cofficients. Given

∆y =

∞
∑

ℓ=1

aℓ∆xℓ and ∆x =

∞
∑

ℓ=1

bℓ∆yℓ ,

where the inversion coefficients bi run b1 = 1/a1, b2 = −a2/a3
1, . . . (Ar-316–317).
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d) The Friedmann acceleration equation can be used to get a useful expression for the deceleration
parameter q0. Behold:

ä

a
= −4πG

3

(

ρ + 3
p

c2

)

+
Λ

3
äa

ȧ2
H2 = −4πG

3

(

ρ + 3
p

c2
+ ρΛ + 3

pΛ

c2

)

−qH2 = −4πG

3
[ρ(1 + 3w) + ρΛ(1 + 3wΛ))

q =
4πG

3H2
[ρ(1 + 3w) + ρΛ(1 + 3wΛ))

q =
1

2

1

ρcritical

[ρ(1 + 3w) + ρΛ(1 + 3wΛ))

q =
1

2
[ΩM(1 + 3w) + ΩΛ(1 + 3wΛ)]

q =
1

2
[ΩM − 2ΩΛ] =

ΩM

2
− ΩΛ with w = 0 and wΛ = −1 as per usual

q =
1

2
[0.3αM − 2 × (0.7αΛ)] =

1

2
[0.3αM − 1.4αΛ] = 0.15αM − 0.7αΛ ,

where αM = ΩM/0.3 (0.3 being a modern fiducial value) and αΛ = ΩΛ/0.7 (0.7 being a modern
fiducial value). Wit the modern fiducial values, one obtains a fidicial modern value q0 = −0.55.
Before 1998, people mostly thought ΩΛ = 0 which with ΩM = 0.3 (which was what it seemed then
as well as now) gives q0 = 0.15. However, some people then hoped that ΩM = 1 which would give
q0 = 1/2 which many thought was the great good value. Why?

SUGGESTED ANSWER:

a) Behold:

a(t) = a0 + ∆tȧ0 +
1

2
∆t2ä0 + . . . = a0

[

1 + ∆tH0 +
1

2
∆t2

ä0

a0

+ . . .

]

= a0

[

1 + ∆tH0 −
1

2
∆t2q0H

2
0 + . . .

]

b) Behold:

z = −1 + a0/a(t) = −1 +

[

1 − ∆tH0 +
1

2
∆t2q0H

2
0 + ∆t2H2

0 + . . .

]

= −H0∆t +

(

1 +
1

2
q0

)

H2
0∆t2

c) Behold:

tLB = t0 − t = −∆t =
z

H0

[

1 −
(

1 +
1

2
q0

)

z + . . .

]

.

d) It made the universe geometry flat (which makes it simpler to understand) and didn’t need a
cosmological constant. It is also true that nearly exact flatness was a prediction of inflation
which was thought of as a promising theory since circa 1980. However, the fact that ΩM kept
turning out to be ∼ 0.3 suggested to some even before the discovery of the acceleration of the
universal expansion that maybe we needed a cosmological constant if inflation was going to be
maintained.

Redaction: Jeffery, 2018jan01

004 qfull 00710 1 3 0 easy math: small z expressions for the cosmological distance measures
13. To get the small cosmological redshift z formulae for cosmological distance measures one expands a(t)

around current time t0 to 2nd order in ∆t = t − t0, parameterizes the first expansion coefficients with
the Hubble constant H0 = ȧ0/a0 and the deceleration parameter q0 = −ä0a0/ȧ2

0, substitutes for a(t)
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with z (and thereby assuming t is the start time for a light signal coming from z), and inverts the power
series to get lookback time tLB to 2nd order in small z:

tLB =
z

H0

[

1 −
(

1 +
1

2
q0

)

z + . . .

]

.

One then uses the tLB formula with the Robertson-Walker metric applied to the light signal to get the
comoving coordinate r to 2nd order in z:

r =
zc

a0H0

[

1 − 1

2
(1 + q0)z + . . .

]

.

There are parts a,b,c,d. The parts can be done be at least semi-independently, so don’t stop
necessarily if you can’t do a part.

NOTE: This question has MULTIPLE PAGES on an exam.

a) Use the 2nd-order-in-z formulae given in the preamble to get the 2nd-order-in-z formulae
(simplified so that there is only one second order term appearing) and 1st-order-in-z formulae
(expressed just one term appearing) for the following standard cosmological distance measures
(expressed in observational form if it exists and then theoretical form), except for expression for z
itself included for completeness:

Cosmological redshift: z =
λ0 − λe

λe

=
a0

a(t)
− 1 1 + z =

a0

a(t)

Lookback time: tLB = t0 − t(a)

Comoving coordinate r: r = f−1

{

A

[

t0, t

(

a0

1 + z

)]}

Proper distance: DP = a0f(r)

Recessional velocity: vR = H0DP

Redshift velocity: vred = zc

Luminosity distance: DL =

√

L

4πf
= a0r(1 + z)

Angular diameter distance: DA =
Druler

θ
=

a0r

(1 + z)
.

b) Under what conditions are the cosmological distances measures direct observables to 1st and 2nd
order given that one can measure z?

c) Prove that all the standard cosmological distance measures are the same to 1st order in small
z aside from constants. Show what they are in terms of quantity zc/H0, where c/H0 =
(13.968 . . . Gly)/h70 = (4.2827 . . . Gpc)/h70 is the Hubble length with h70 = H0/[70 (km/s)/Mpc].

d) Prove the observational Hubble’s law:

vred = H0DP-1st ,

where DP-1st is proper distance to 1st order in small z as measured from luminosity distance or
angular diameter distance.
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e) Given that |q0| <∼ 1, at what z values would one expect the standard cosmological distance measures
(with constants applied as needed to make them all all equal to 1st order in z) to diverge by of
order or less than 1 %, 10 %, 30 %, 50 %, and 100 %.

SUGGESTED ANSWER:

a) Behold:

Cosmological redshift: z =
λ0 − λe

λe

=
a0

a(t)
− 1 ≈ a0

a(t)
for z >> 1 1 + z =

a0

a(t)

Lookback time: tLB = t0 − t(a) =
z

H0

[

1 − (1 +
1

2
q0)z + . . .

]

=
z

H0

+ . . .

Comoving coordinate r: r = f−1

{

A

[

t0, t

(

a0

1 + z

)]}

=
zc

a0H0

[

1 − 1

2
(1 + q0)z + . . .

]

=
zc

a0H0

+ . . .

Proper distance: DP = a0f(r) =
zc

H0

[

1 − 1

2
(1 + q0)z + . . .

]

=
zc

H0

+ . . .

Recessional velocity: vR = H0DP = zc

[

1 − 1

2
(1 + q0)z + . . .

]

= zc + . . .

Redshift velocity: vred = zc

Luminosity distance: DL =

√

L

4πf
= a0r(1 + z) =

zc

H0

[

1 +
1

2
(1 − q0)z + . . .

]

=
zc

H0

+ . . .

Angular diameter distance: DA =
Druler

θ
=

a0r

(1 + z)
=

zc

H0

[

1 −
(

3

2
+

1

2
q0

)

z + . . .

]

=
zc

H0

+ . . . .

b) All the standard cosmological distance measures are direct observables to 1st order in small z
if H0 is known and to 2nd order in small z if H0 and q0 are known.

c) By inspection from part (a) to 1st order in small z:

ctLB = a0r = DP =
vR

H0

=
vred

H0

= DL = DA =
zc

H0

= z

(

13.968 . . . Gly

h70

)

= z

(

4.2827 . . . Gpc

h70

)

.

d) By inspection from part (a), we find the observational Hubble’s law

vred = H0DP-1st ,

where DP,1st is proper distance to 1st order in small z as measured from luminosity distance
or angular diameter distance.

e) By z equal to 0.01, 0.1, 0.3, 0.5 and 1.

Redaction: Jeffery, 2018jan01


