Review the Basics

V = IR:
What is the current in R1 \& R2 and the voltage at point A ?
$\mathrm{I}=12 \mathrm{~V} / 3 \mathrm{~K} \Omega=4 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{A}}=4 \mathrm{~mA} * 2 \mathrm{~K} \Omega=8 \mathrm{~V}$

Transistors/FETs:

If $\mathrm{A}=5 \mathrm{~V}$ what's the current in R1? $\mathrm{I}_{\mathrm{R} 1}=(5 \mathrm{~V}-0.7 \mathrm{~V}) / 1 \mathrm{~K} \Omega=4.3 \mathrm{~mA}$ If $\mathrm{h}_{\mathrm{fe}}=50$ what's the current in R2 and the voltage at B ?
$\mathrm{h}_{\mathrm{fe}} * \mathrm{Ib}=50 * 4.3 \mathrm{~mA}=215 \mathrm{~mA}$. If Q1 is

fully on (i.e. $\mathrm{V}_{\mathrm{B}} \sim 0.2 \mathrm{~V}$) then $\mathrm{I}_{\mathrm{R} 2}=12 \mathrm{~V} / 100 \Omega=120 \mathrm{~mA}$. With the given voltage and resistance it's impossible to put more than 120 mA through R 2 so $\mathrm{I}_{\mathrm{R} 2}=120 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{B}}=0.2 \mathrm{~V}$ (note: It's OK to assume $\mathrm{V}_{\mathrm{B}}=0$ for the current calculation).
If $\mathrm{h}_{\mathrm{fe}}=10$ what's the current in R 2 and the voltage at B ?
$\mathrm{h}_{\mathrm{fe}} * \mathrm{Ib}=10 * 4.3 \mathrm{~mA}=43 \mathrm{~mA} .43 \mathrm{~mA}^{*} 100 \Omega=4.3 \mathrm{~V} . \mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}-4.3 \mathrm{~V}=7.7 \mathrm{~V}$
(Use the I_{D} VS V_{DS} graph for the FET questions)
If A $=2.5 \mathrm{~V}$ what's the current in R 2 and the voltage at B ?
From graph $\mathrm{I}_{\mathrm{Dmax}}$ with $\mathrm{V}_{\mathrm{GS}}=2.5$ is about $2.7 \mathrm{~A} . \mathrm{I}_{\mathrm{R} 2}=2.7 \mathrm{~A}$.
$2.7 \mathrm{~A} * 3 \Omega=8.1 \mathrm{~V} . \mathrm{V}_{\mathrm{B}}=12-8.1 \mathrm{~V}=3.9 \mathrm{~V}$.
If $\mathrm{A}=15 \mathrm{~V}$ what's the current in R 2 and the voltage at $\mathrm{B}\left(\right.$ Note: $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=$ 0.026Ω)?
With $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$ the graph shows an increasing I_{D} with V_{DS} (i.e. the max current is
 limited by the switch on resistance which at $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V}$ is 0.026Ω).
Since $\mathrm{R}_{\mathrm{DS}} \ll 3 \Omega, \mathrm{I}_{\mathrm{D}} \sim 4 \mathrm{~A}, \mathrm{~V}_{\mathrm{B}}=4 * 0.026=0.104 \mathrm{~V}$
This makes sense because the graph shows that when $I_{D}=4 \mathrm{~A} \mathrm{~V}_{\mathrm{DS}}<0.1 \mathrm{~V}$).
Another words, the FET is fully on and the full 12 V is across the 3Ω resistor.
Would the current in R2 or the voltage at B change if R1 was 100 K (explain)?
NO. R1 controls how fast the gate capacitance charges and discharges. Doesn't affect steady state.
The switch is initially closed (short circuit) and the circuit is allowed to come to steady state (i.e. wait a few seconds). The switch is then opened (open circuit). What is the current in R 2 and the voltage at B about one second after the switch is opened?
The gate will stay charged to 9 V for quite a while so the FET will remain on. The max current when $\mathrm{V}_{\mathrm{GS}}=9 \mathrm{~V}$ is well above the 120 mA max $(12 \mathrm{~V} / 100 \Omega)$ so $\mathrm{V}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{D}}=120 \mathrm{~mA}$.

(Same circuit but with R3 added). The switch is initially closed and the circuit is allowed to come to steady state. The switch is then opened. What is the current in R2 and the voltage at B about one second after the switch is opened?
R3 will bleed off the gate charge quickly once the switch is opened. The input capacitance is about 3.7 nF . $\mathrm{T}=\mathrm{RC}=1 \mathrm{M} \Omega * 3.7 \mathrm{nF}=3.7 \mathrm{~ms}$. So after a few time constants the cap will be discharged ($15-20 \mathrm{~ms}$). So after a few seconds the FET will be off and $\mathrm{V}_{\mathrm{B}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0$.

Comparators:

Voltage Regulators \& Power Supplies:

This transformer has an input of $120 \mathrm{Vrms} @ 60 \mathrm{~Hz}$ and an output of 10 Vrms . Sketch the output waveform and label the peak voltage levels.

What is the approximate ripple voltage on C1 (and the max \& min voltage on C1)?
$8 \mathrm{Vrms}=8 * 1.41=11.3 \mathrm{~V}$
peak across the bridge input. The bridge will
 drop about 1.5 V (current flows through two diodes at a time, about 0.75 V drop per diode). The max voltage on C 1 would be $11.3 \mathrm{~V}-1.5 \mathrm{~V}=9.2 \mathrm{~V}$. Assuming the regulator is working, 5 V across 5Ω is a 1 A load current. Ripple voltage $=\mathrm{I} * \mathrm{dT} / \mathrm{C}=1 \mathrm{~A} * 8.33 \mathrm{~ms} / 10,000 \mathrm{uF}=0.833 \mathrm{~V}$. So minimum voltage on C 1 is $9.2 \mathrm{~V}-0.83 \mathrm{~V}=8.37 \mathrm{~V}$. Since $8.37 \mathrm{~V}>7 \mathrm{~V}$ the output should be a regulated 5 V .

Relays:

Why can't you use a SSR designed for an AC load with a DC load?
A SSR designed for an AC load probably uses an SCR to switch the load. An SCR turns off when the current stops (i.e. crosses zero 120 times a second). With a DC load the current will never cross zero and the SCR won't turn off (even if the trigger signal is removed).

What's a flyback diode and where do you put it?
See explanation at: http://www.physics.unlv.edu/~bill/PHYS483/relay.pdf

