0.1 lecture VI

0.2 Angular Momentum as a Generator of
Rotation

0.2.1 Unitary Transformations
Consider the position operator z, and its eigenstate

Tl >= x|z > (1)
Lets define the operator (we set h = 1)

U = exp(—ipa) (2)

where p is the momentum operator [p,z] = —i, and a is a constant real
number.
The Hermitian conjugate of U is

UT = exp(ipa) (3)
since p is Hermitian. Now
UlU =00 =1 (4)

therefore UT = U~! by definition. Operators that have this property are
called unitary operators, one way to construct a unitary operator is to expo-
nentiate, as above, a Hermitian operator.

We ask, what is the physical significance of the state U|z > 7 First, we
notice that the inner product of U|z > is equal to the inner product < x|z >,
which follows from the fact that U is unitary.

Lets define a new operator

P =UzU" =
iy ()
& —dalp, 2] + [, [p, ] +
= f—a (5)
or
UiUl =% —a (6)



We can rewrite

Zlz >= x|z >
UzU'U|z >= zU|z >
(& —a)U|z >=2U|z > (7)

Thus U|x > is an eigenstate of (& —a) with eigenvalue z, or U|z >= |z +a >.
From this equation we interpret the action of U on the ket |z >. It translates
the eigenvalue by the amount a, the constant in the exponent. Suppose we
have two operators U; = exp(—iap), Uy = exp(—ibp) can you show that U =
U,U, also generates a translation by an amount a4+ b. We say that the linear
momentum operator p is a generator of the translation symmetry operator
U. This symmetry operator is also, by necessity, a unitary transformation.
We can generalize these ideas by defining a new unitary operator

U = exp(—iJq0) (8)

where Jy is a component of the angular momentum. Prove that U is
unitary. Suppose we have an eigenstate |jm > such that

J?gm >=j(j + 1)|jm >
J3|im >= m|jm > 9)

What is the physical meaning of U|jm > 7
Since

J3|jm >= m|jm >
UJsUYU|jm >= mU|jm > (10)

U|jm > is an eigenstate of the new operator UJs;U' with the eigenvalue m
associated with operator J3.
Now

UJsU' = exp(—iJ,0)J5 exp(iJ20)
(—16)°

= J;3 —i0[Js, J3] + TR

[J2, [J2, J5]] + .. (11)
Using angular momentum commutation relations we find,

exp(—iJ20)J3 exp(iJof) = Jzcos + Jysind (12)
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We note that this operator is just J - n where n = sinfi + cosfk is a unit
vector in the x — z plane making an angle # with respect to the z axis. In
other words exp(—iJ,0)Jsexp(iJof) = J - 1 is the component of angular
momentum along the 7 direction. Thus U|jm > is an eigenstate of the
operator J -n and we say that U generates a rotation, around the y axis. As
an example, consider a spin 1/2 (j = 1/2) system. Then [j;m =1/2 > is a
”spin-up” eigenstate with respect to the z-axis. By performing the rotation,
Ulj;m = 1/2 > is still a ”spin-up vector” (since m = 1/2) but along a new
direction. If we set § = w/2 it is an "up” state along the x-axis.
In this manner, we can define a general rotation

U = exp(—iJ30) exp(—iJof) exp(iJz) (13)

As above, we know that the eigenstates of this operator are U|jm >, but we
need to evaluate

UJsUt (14)

Since J3 commutes with the outer operators, we get

exp(—iJ39) exp(—iJa0)J3 exp(iJaf) exp(iJz9) (15)
or
exp(—iJ39) <J30039 + Jlsmﬁ) exp(iJzp) =
J3cos0 + sinf exp(—iJzp)J, exp(iJz¢) (16)
Since
exp(—iJ39)J; exp(iJzp) = Jicosp + Jrsing (17)
We find

URUY = Jycosl + sinf(Jicosd + Josing) = J -0

A

A = kcosd + isinfcosd + sinfsingj (18)

and thus, U|jm > is an eigenstate, with eigenvalue m, of the component of
angular momentum J along the dircetion of the unit vector 7.



We pointed out in previous discussions that the basis [jm > form a (2j+1)
dimensional matrix representation for the operators J. We can also use them
to form matrix representations of the rotation operator U. The matrix

< gm'|Uljm >=< jm'| exp(—iJ3¢) exp(—iJof) exp(iJsg)|jm >=
< jm'| exp(—iJo0)|jm > exp(—(m' —m)$)  (19)

is called the Wigner rotation matrix. For the special case j = %

< jm!| exp(—iJaf)|jm >= (;fjl%; —;)%%)) 20)
and thus
Ul (08 —sin()esp(~0)
< gm/|U[jm >= (sin(g)exp(qﬁ) cos(?) ) (21)

The matrix representation for the rotation operator U allows us to construct
eigenstates for the angular momentum in any arbitrary direction. So if we

have a ”spin-up” state
1
(0) (22)
the transformed state
( cos(%) —sin(%) exp(—qﬁ)) _ (1) _ ( cos(%)
stn sin

(4) exp(9) cos(3) 0/~ (5) eXp(¢))

is an eigenstate of J - n. Using the values § = 7/2,¢ =0 and 0 = 7/2,¢ =
7 /2 we obtain the eigenstates, with eigenvalue +1/2, along the & and y axis
respectively.

(23)



