0.1 lecture VI

0.2 Angular Momentum as a Generator of Rotation

0.2.1 Unitary Transformations

Consider the position operator \hat{x} , and its eigenstate

$$\hat{x}|x> = x|x> \tag{1}$$

Lets define the operator (we set $\hbar = 1$)

$$U \equiv \exp(-i\hat{p}a) \tag{2}$$

where \hat{p} is the momentum operator $[\hat{p}, \hat{x}] = -i$, and a is a constant real number.

The Hermitian conjugate of U is

$$U^{\dagger} = \exp(i\hat{p}a) \tag{3}$$

since \hat{p} is Hermitian. Now

$$U^{\dagger}U = UU^{\dagger} = 1 \tag{4}$$

therefore $U^{\dagger} = U^{-1}$ by definition. Operators that have this property are called unitary operators, one way to construct a unitary operator is to exponentiate, as above, a Hermitian operator.

We ask, what is the physical significance of the state U|x>? First, we notice that the inner product of U|x> is equal to the inner product < x|x>, which follows from the fact that U is unitary.

Lets define a new operator

$$\hat{x}' \equiv U\hat{x}U^{\dagger} =$$

$$\hat{x} - ia[\hat{p}, \hat{x}] + \frac{(-ia)^2}{2!}[\hat{p}, [\hat{p}, \hat{x}] + \dots$$

$$= \hat{x} - a$$
(5)

or

$$U\hat{x}U^{\dagger} = \hat{x} - a \tag{6}$$

We can rewrite

$$\hat{x}|x\rangle = x|x\rangle$$

$$U\hat{x}U^{\dagger}U|x\rangle = xU|x\rangle$$

$$(\hat{x}-a)U|x\rangle = xU|x\rangle$$
(7)

Thus U|x> is an eigenstate of $(\hat{x}-a)$ with eigenvalue x, or U|x>=|x+a>. From this equation we interpret the action of U on the ket |x>. It translates the eigenvalue by the amount a, the constant in the exponent. Suppose we have two operators $U_1 = \exp(-ia\hat{p})$, $U_2 = \exp(-ib\hat{p})$ can you show that $U \equiv U_1U_2$ also generates a translation by an amount a+b. We say that the linear momentum operator \hat{p} is a generator of the translation symmetry operator U. This symmetry operator is also, by necessity, a unitary transformation.

We can generalize these ideas by defining a new unitary operator

$$U \equiv \exp(-iJ_2\theta) \tag{8}$$

where J_2 is a component of the angular momentum. Prove that U is unitary. Suppose we have an eigenstate $|jm\rangle$ such that

$$J^{2}|jm\rangle = j(j+1)|jm\rangle$$

$$J_{3}|jm\rangle = m|jm\rangle$$
(9)

What is the physical meaning of U|jm>? Since

$$J_3|jm> = m|jm>$$

$$UJ_3U^{\dagger}U|jm> = mU|jm>$$
(10)

U|jm> is an eigenstate of the new operator UJ_3U^{\dagger} with the eigenvalue m associated with operator J_3 .

Now

$$UJ_3U^{\dagger} = \exp(-iJ_2\theta)J_3 \exp(iJ_2\theta)$$

= $J_3 - i\theta[J_2, J_3] + \frac{(-i\theta)^2}{2!}[J_2, [J_2, J_3]] + \dots$ (11)

Using angular momentum commutation relations we find,

$$\exp(-iJ_2\theta)J_3\exp(iJ_2\theta) = J_3\cos\theta + J_1\sin\theta \tag{12}$$

We note that this operator is just $\mathbf{J} \cdot \hat{\mathbf{n}}$ where $\hat{\mathbf{n}} = \sin\theta \hat{\mathbf{i}} + \cos\theta \hat{\mathbf{k}}$ is a unit vector in the x-z plane making an angle θ with respect to the z axis. In other words $\exp(-iJ_2\theta)J_3\exp(iJ_2\theta) = \mathbf{J}\cdot\hat{\mathbf{n}}$ is the component of angular momentum along the $\hat{\mathbf{n}}$ direction. Thus U|jm> is an eigenstate of the operator $\mathbf{J}\cdot\hat{\mathbf{n}}$ and we say that U generates a rotation, around the y axis. As an example, consider a spin 1/2 (j=1/2) system. Then |j;m=1/2> is a "spin-up" eigenstate with respect to the z-axis. By performing the rotation, U|j;m=1/2> is still a "spin-up vector" (since m=1/2) but along a new direction. If we set $\theta=\pi/2$ it is an "up" state along the x-axis.

In this manner, we can define a general rotation

$$U \equiv \exp(-iJ_3\phi) \exp(-iJ_2\theta) \exp(iJ_3\phi) \tag{13}$$

As above, we know that the eigenstates of this operator are U|jm>, but we need to evaluate

$$UJ_3U^{\dagger} \tag{14}$$

Since J_3 commutes with the outer operators, we get

$$\exp(-iJ_3\phi)\exp(-iJ_2\theta)J_3\exp(iJ_2\theta)\exp(iJ_3\phi) \tag{15}$$

or

$$\exp(-iJ_3\phi)\left(J_3\cos\theta + J_1\sin\theta\right)\exp(iJ_3\phi) = J_3\cos\theta + \sin\theta\exp(-iJ_3\phi)J_1\exp(iJ_3\phi)$$
(16)

Since

$$\exp(-iJ_3\phi)J_1\exp(iJ_3\phi) = J_1\cos\phi + J_2\sin\phi \tag{17}$$

We find

$$UJ_3U^{\dagger} = J_3\cos\theta + \sin\theta(J_1\cos\phi + J_2\sin\phi) = \boldsymbol{J} \cdot \hat{\boldsymbol{n}}$$
$$\hat{\boldsymbol{n}} = \hat{\boldsymbol{k}}\cos\theta + \hat{\boldsymbol{i}}\sin\theta\cos\phi + \sin\theta\sin\phi\hat{\boldsymbol{j}}$$
(18)

and thus, U|jm> is an eigenstate, with eigenvalue m, of the component of angular momentum J along the direction of the unit vector \hat{n} .

We pointed out in previous discussions that the basis $|jm\rangle$ form a (2j+1) dimensional matrix representation for the operators J. We can also use them to form matrix representations of the rotation operator U. The matrix

$$< jm'|U|jm > = < jm'|\exp(-iJ_3\phi)\exp(-iJ_2\theta)\exp(iJ_3\phi)|jm > = < jm'|\exp(-iJ_2\theta)|jm > \exp(-(m'-m)\phi)$$
 (19)

is called the Wigner rotation matrix. For the special case $j=\frac{1}{2}$

$$< jm' | \exp(-iJ_2\theta)| jm > = \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}$$
 (20)

and thus

$$< jm'|U|jm > = \begin{pmatrix} cos(\frac{\theta}{2}) & -sin(\frac{\theta}{2})\exp(-\phi) \\ sin(\frac{\theta}{2})\exp(\phi) & cos(\frac{\theta}{2}) \end{pmatrix}$$
 (21)

The matrix representation for the rotation operator U allows us to construct eigenstates for the angular momentum in any arbitrary direction. So if we have a "spin-up" state

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{22}$$

the transformed state

$$\begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2})\exp(-\phi) \\ \sin(\frac{\theta}{2})\exp(\phi) & \cos(\frac{\theta}{2}) \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})\exp(\phi) \end{pmatrix}$$
(23)

is an eigenstate of $\boldsymbol{J} \cdot \hat{\boldsymbol{n}}$. Using the values $\theta = \pi/2$, $\phi = 0$ and $\theta = \pi/2$, $\phi = \pi/2$ we obtain the eigenstates, with eigenvalue +1/2, along the \boldsymbol{x} and \boldsymbol{y} axis respectively.