0.1 Lecture V

0.2 Wavepackets

Consider the 1D system for a particle whose hamiltonian is
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The Schrodinger Eq. in Hilbert space has the form
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and the formal solution
|W(t) >= exp(—i/hﬁt)|\ll(0) > (3)

(Question. Can you prove this?). We take the inner product with ket |z >

< z|U(t) >=< z| exp(—i%t)W(O) >=
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[ dp < alexp(=i%0)lp >< pl¥(0) > (4)

If we assume that V(z) = 0(i.e. a free particle) using < z| exp(—i%t) lp >=
exp(—i%t) < zlp > and < p|¥(0) >= [dz' < p|z’ >< 2'|¥(0) >, we get
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where we defined U(z,t) =< z|¥(t) >, and ¥y(z) =< z|¥(0) >. We can
re-write the above expression in the form

U(z,t) = / do' K (wt; ') 0 (2, 1) (6)

where in our case we set t' = 0 and

1 p(t — 1)
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K(zt; 2't") =




is called the propagator for a free particle. It can also be expressed as the
probability amplitude

< z|exp(—iHt)|z' > (8)

whose square gives the probability density for a particle to be found in the
vicinity of = at time ¢, provided that the system is described by probability
amplitude ¥y(x) at t=0. Proof:
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We can perform the integral to get an explicit expression for the free particle
propagator (see text)

o m im(x — z')?
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Gaussian wavepackets

We now make some assumptions regarding the initial condition, ¥y(z) =
U(z,t = 0). We define a gaussian wavepacket

1

-+ Do
‘110(.’1/') - 011/4(271')1/4 eXp(Z A ‘/E)
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Using this we can find the expectation value

<z >= /\II(’;(:C)x\I/(a:) =0 (12)
and the variance < Az >%?=< 2?2 > — < z >2, but

<3?>= / U (2)220(z) = a? (13)



and so < Az >= a. Also
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We find (can you show this?) < p? > — < p >2= h?/4a? or

<p>= —ih/dx\IlS(x) = po
Ap =h/2a
The Gaussian wavepacket has the interesting property that

Az Ap = h/2.

(16)

It gives the minimum uncertainty in both Z, p when simultaneous mea-
surements are made. Using the the Gaussian wavepacket we calculate the

wavepacket at some time ¢ > 0. Hence

U(z,t) = / dr'K (xt; 2'0) o (z')
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evaluating this integral (see text) we get
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We calculate the probability density
P(a,t) = [U(z, )P = !
’ ’ av/2m(1 +12/72)1/2
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this looks like a wavepacket but now with a new width
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and the center of symmetry has shifted to the value x = py/m¢t. The nor-
malization factor changes so the [dzP(z,t) =1 at all times.

Consider what happens if we let the parameter i — 0. This is called the
classical limit, and as i — 0 we get
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exp[—#].
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P(z,t) = (21)
This is exactly what one would get, in classical mechanics, if we had some
uncertainty in the position of the particle, given by a Gaussian at ¢ = 0, and

we looked we considered calssical propagation. We get the same uncertainty
at time ¢, as at t = 0 or Az(t) = Az(0). Also, if we let a — 0 we find

P(z,1) = 8(z — pot/m) (22)

the particle moves on a classical trajectory.
If A # 0 we find the uncertainty Az increases in time according to

Az(t) = Az(0)(1 + £2/72)1/2 (23)

Feynman Path Integral

Up to now we considered the propagator for a free particle. When 1% # 0, it is
much more difficult to obtain a closed form for the propagator, and only a few
cases are available for closed form analytic representation. However, there is
an alternative representation for the propagator K (xt;'t") for arbitrary 1%
that is called the Feynman path integral representation of the propagator.
We have,
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K(zt; 2't) =< 1 exp(—i%(t — ) > (24)

Lets call the total time interval 7 = (t—t') and we define a small time interval
At = (t—t")/N where N is some large integer. We can then write the above
amplitude as

< z|exp(—i—(t — t1))exp(—i—(t; — t2)) exp(—i—(to — t3))...
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which we can also express as
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Now exp(—i%AT) # exp(—i%AT) exp(—i%AT), where Hy = p?/2m be-
cause [ﬁo, V] # 0, however, if At is sufficiently small then we can replace
the inequalty with . In the limit At — 0 we are allowed the express the

exponents as the products
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Using the expression for the free propagator, we get for the above expression
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Consider the classical Lagrangian for a particle in 1D.
2
Liw) = = V() (29)
Consider the action
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where we defined z, = z(t,), z, = z(t,) and we took t,—t, to be an infitesimal
interval. We therefore recognize that the product of factors can be expressed

as
(\/27T;;At)N_1/d$1/d$2---/dIN—1 X

exply [ dtnLla] ely [ dtalien)] el [ dtna L@ ()
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ill,

The above expression has the form of the path integral and thus
K(zt;2't") = Limn oo (W)N Ydxy [das... [doy_1 X
' [ dti L)) + [ dtaL(@a) .. + [y dinoL(')]) =
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Thus the propagator is expressed as a sum over all paths of the exponent of
the action.

Homework

Consider a 1 D particle that is constrained to move in a container whose
sides are located at x = £L/2.

]
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(a) Find the time independent energy eigenstates for this system. The eigen-
states must vanish at the boundaries of the container.

(b) Use the result of (a) to find the time-dependent functions corresponding
to the energy eigenstates found in (a).

(c) Given an hamiltonian H, whose eigenstates are labeled |n > with eigen-
value F,. Show that the propagator

< a'|exp(—i/hH(t — t')|z >= ZUn Y un(x) exp(—i/hE,(t — 1)) (34)

where u,(z) =< z|n >.



(d) Use the results of part (a) and (c) to find an expression for the propagator
K (xt; 2't"). Simplify as much as you can.

(e) Suppose that at t=0, the particle is found in a Gaussian wavepacket of
width @ = L/8, and is characterized by < p >= pg. Use the result of part
(d) to find an expression for the probability amplitude ¥(z,t) for any time
t> 0.



