0.1 Lecture IV

0.1.1 Particlein1 D

We now look at a true Hilbert space, whose dimension is non-denumerable
and infinite. A particle of mass m is constrained to move in one dimension,
whose position coordinate is . We denote the position operator Z and define
its eigenstates

Zlx >= x|z > (1)

Note that x is no longer discrete since a measurement with device z can
produce any value in the domain of real numbers. Thus the basis |z > span
an infinite vector space. If this basis is complete we can express a quantum
state |U >,

O >=>" U(z)|z > (2)

in analogy with the expansion over a complete discrete basis

T >=>"T,|n >, (3)

where U, is the probability amplitude to find the system in state |n >.
However the sum ), is undefined since z is non-denumerable. We substitute
>z — J dr i.e. the sum becomes an integral. The probability to find the
system in the region x,x + dx is given by

dz|¥(z)|* (4)

In analogy with the discrete case, ¥U(x) is called the probability amplitude at
point x, it is a function of a continuous variable x. For the discrete case, the
amplitude is given by the relation ¥, =< n|¥ >, so we require (assuming
|z > are orthogonal)

U(z) =< z|¥ > (5)
Inserting this relation above we get

\\I!>:/da: <z|¥> x> (6)
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Lets take the inner product of the above relation with ket |z' >
<20 >= /dx <z|U >< 2’|z >
wmq:/mw@y«ﬂx> (7)

We know that the Dirac delta function (see appendix in text) has the prop-
erty

[ dwde - a)f(z) = £(a) ®)

where f(z) is any arbitrary function of . Comparing this relation with the
equation derived above we require

< zl|z' >=(x —2'). 9)

In matrix representation theory we pointed out that a set of amplitudes
< n|¥ >, representing the probability to find the system in state |n >, can
be written as a column matrix

< 1|¥ >
<20 >

T > | . (10)

<n|¥ >
We can arrange the amplitudes ¥(z) in the same way,

< z|U >
<z'|¥ >

T > | . (11)

< x”'|\I’ >
We require that < ¥|¥ >= 1. Using the completeness relation
/MM><ﬂ:I (12)
we obtain

<VU|¥ >= /dx <VUlz >< z|¥ >= /da: U (z)¥(z) =1 (13)



0.1.2 Momentum in 1 D

We denote the momentum operator p so that

plp >=plp > (14)
|p > also represent a complete basis,
<plp’ >=d(p—p') (15)
and we can define an amplitude ¥(p) so that
¥ >= /dplp >< p|¥ >= /dp|p > U(p) (16)
The operator z, p are incompatible since
[p, 2] = —ihl. (17)

Let us find the matrix representation of operator Z, < &'|Z|z >. This is the
analog of the matrix element x,,, =< m/|z|n > for a discrete basis. We find

< 2|2z >=< 2’|z >z =x6(z — ') (18)
we notice that the matrix is ”diagonal”. How about < p'|Z|p > ? We note
< 2'|(&p — pi)|z >= (2’ — z) < 2'|p|z > (19)
but [p, ] = —ihl and so

(' — z) < 2'|plz >=ih < 2'|I|x >=ihé(z — z') (20)

we need to ”solve” the above equation for < z'|p|z > we make the ”guess”

0
oA _ s+ Y r_

< Z'|plz >= zhaxlé(x x) (21)

We justify this guess by inserting this relation into the Eq. above and find,

0 0

—ih(z' — 33)@(5(33, —1) = —ih% [(x' —z)6(x’ — 33)] +iihd(z —z') (22)

the first term is a total derivative, and if we integrate it we obtain a term
proportional to (z — 2')d(z — ') = 0. Thus

< 2'|z|x >= 2é(z' — x)
I oA L 0 /
< Z'|plz >= —zh@(S(x — ) (23)

HW Find the representation of z and p in the momentum basis.
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Uncertainty principle

We took note that position £ and momentum p are incompatible operators.
Given that the system is in state |¥ > and that independent measurements
lead to expectation values

<z >=<VUz|T >
<p>=<Vp|¥ >, (24)

we now discuss a relationship between the variance Az? =< 2 > — < & >2
and Ap® =< p? > — < p >2 We define operators

AT=13—<2T>

Ap=p—<p> (25)
given state |¥ > we can define new states
Az|T >
Ap|¥ > (26)
since these states must satisfy the Schwarz inequality we get
<A >S<APE> > | <AzAp> (27)
but
Az Ap = 1/2[Az, Ap| + 1/2{Az, Ap}+ (28)
where {A, B}, = AB + BA. Now [AZ, Ap| = [Z, p] and so
< AZAp >=1/2 < [z,p] > +1/2 < {Az, Ap}, > (29)
The operator [Z,p] is antihermitian since [Z,p|" = —[#, ] and one can show

that the expectation value for an antihermitian operator is always a pure
imaginary number, whereas the the expectation value of the hermitian oper-
ator {Az, Ap}, is always real. Thus

| < AzAp > [?=1/4] < [2,p] > |* + 1/4] < {A%, Ap}, > | (30)
It follows that
<A >< AP > > 1/4| < [z,p] > |? (31)

We note that < Az? >=< Az? >, and < Ap? >=< Ap? > and so we obtain,
using the the commutator [p, §| = —ihl ,

< Az? >< Ap? >> h?/4 (32)



0.1.3 Schroedinger equation

We consider the time-evolution equation

,hw = H|U >
ot
2
_Pp -
H= o + V(%)

(33)

Take the inner product of this equation with ket |z >, then the left hand

side becomes

o) > d<al¥(t) > _ dV(,1)

h
th <=7 o1 1

Consider the the r.h.s.
< 3c|ﬁ + V(2)|¥(t) >
2m
First,

< 2[V(@)|T(t) >=V(2) < 2[T(t) >= V(2)¥(z, 1)

(can you prove the above relation?). Also

< 2O (t) >= /d:r’/dx” < glpla’ >< 2 |pla" >< 2| U(t) >

but using a previous result, the double integral can be re-written

! " - 8 ! - 8 ! n n
/ dz / da" (=if) 58w = 2')(=ih) 5 0(a’ = 2")¥(a", 1)
which, when integrated, gives

82
—BQ@\I](ZE, t)

Thus we find the Schroedinger Eqn.

L 0U(z,t) R O

(34)

(38)

(39)



Momentum-coordinate transformation functions

Lets express an eigenstate of momentum |p > in terms of the coordinate
basis |z >

Ip >= /daj\:v >< xlp > (41)

< z|p > is a probability amplitude. If the system is in state |p >, it gives
the probability to find it at position x, when a measurement with device &
is made. Consider the identity,

<zlplp>=p<zp> (42)

but this can be re-written

/dx' <zlpl' >< 2 |p>=p<z|p> (43)
or
/dm' (—Zﬁ)gé(fb —2)y<d'p>= —ih2 <zlp> (44)
Oz Oz
Thus
., 09(x)
— = pd 4
ih— = = p2(2) (45)

where we defined ®(z) =< z|p >. We can consider this equation as a
differential equation for the function ®(x), whose solution is

< z|p >= Cexp(ipz/h) (46)

where C' is a constant.
We can find the constant C' by requiring,

<plp' >=6d(p—1p') (47)
but

<plp> = /dz <plz >< zlp >= /dx|0|2exp(—i(p —p')/hx)
= |CP2hmd(p — 1) (48)



where we have used the representation for the delta function,

/ dz exp(i(p — p')z) = 276(p — p') (49)
Thus

B(z) =< zlp >= \/zlh_w explipz/h). (50)
Note that

/dx|q>(x)\2 = o0 (51)

Functions that are non-normalizable are called improper functions, typically
physical states are represented by normalizable functions, so that

/d:r|\1f(a:)|2 ~1. (52)

By the Fourier theorem we can always represent a physical normalized func-
tion ¥(z) in terms of improper functions, e.g.

U(z, 1) = \/% [ ¥, t)explipz/h) (53)

A normalized probability amplitude ¥(z, t) is also called a wavepacket.



