0.1 Lecture II1

0.2 Some Hilbert space examples

The simplest Hilbert space consists of a basis that spans one-dimension, i.e.
we only have a single observable that we measure with 100% certainty.

Lets suppose the eigenstate is given by |e; > and is an eigenstate of the
Hamiltonian operator H, so that H|ey >= €y|ep >. Suppose < ¢leg >= 1,
show that this state is not unique, that exp(ia)|ey > is also a normalized
eigenstate (o is an arbitrary real number). Show that a solution of the
Schrodinger eqn is given by

W (t) >= exp(—ieot/h)|tho > (1)

where |1y > is an eigenstate of H.

0.2.1 2 D Hilbert space

An important class of quantum systems can simply be expressed by only 2
basis vectors, lets call them |+ > and |— >. According to the Dirac notation
we construct operators.

X1 =+ >< +|
Xy =|—>< —|
X3 =]+ >< —|
Xy =|-><+|

Can you show that physical operators are linear combinations of the above
operators? We can also multiply these operators using Dirac’s procedure,
thus e.g. X; X3 = X, but X3X; = 0. Note that multiplication is not commu-
tative for the defined operators. Show that the above operators also form a
vector space. What is the dimension of this vector space? Since multiplica-
tion is not commutative it is natural to define a binary operation called the
Lie bracket that for two members of this space [X,, Xp] = XoXp — Xp X4 A
vector space of operators with a Lie Bracket so that it is linear, i.e.

[aX1 + bXQ,Xg] == a[Xl,Xg] -+ b[XQ,Xg] (2)
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and satisfies the Jacobi identity
[[Xla XZ], X3] + [[X3) Xl]a XZ] + [[X2a X3]a Xl] =0

is called a Lie Algebra. Show that the following operators

S =X+ X,y

So = —1 X3 +1X,

S3=X; — X,
I=X+X, (4)

are physical and form a Lie Algebra. A well know Lie Algebra is the set of
vectors in R® where the Lie bracket is the cross product.

The above system already shows quite interesting behavior. The fact that
we have several physical operators raises the question, how do we characterize
our physical states (kets)? In our previous lecture we mentioned that we use
the eigenvalues of a physical operator to specify the states, but which operator
do we choose? For the system described above we have at least four possible
physical operators to consider. Certainly the state |+ > is an eigenstate of
Ss, and I, but is not an eigenstate Sy and S; (can you see why?).

To answer this we define the concept of compatible observables.

Compatible observables

The set of operators fl f? C‘ . in Hilbert space are said to be compatible if
all possible Lie brackets (commutators) vanish among the set, i.e [A, B] =
[B,C] = [A, C’] = 0, etc. In that case an eigenstate of operator A is also an
eigensta of B...C, etc. Ezercise: proof this. A ket that is an eigenstate of all
mutually compatible operators is called a simultaneous eigenstate of fl, B.
It is denoted by the symbol |abe... > and has the properties. as

Alabe.. >= alabe... >

Blabc.. >= blabe... >

Clabe.. >= c|abe... > (5)
If [A, B] # 0 and eigenstate |a > will not be an eigenstate of B. In the 2 D
Hilbert space find 3-possible sets of commuting observables, to which statee

do [+ >,|— > belong to ? Find the eigenstates for the other sets, and express
them in terms of the |+ >, |— >



Projection operators

Armed with the bra-ket formalism we can construct any operator in Hilbert
space. The projection operator P, is defined as

P, =|a >< al, (6)

Note that P? = P,P, = |a >< a|la >< a| = |a >< a| = P, and in general
any projection operator P has the property P2 = P. Consider operator X
whose eigenstates are given by the set {|a; > |az > ...|a, >}. If we define

the projection operators P,, = |a, >< a,|, show that operator X can be
expressed as a sum of projection operators, i.e.
X = ZPanan (7)
n

Matrix representation of operators

Above we suggested that operators in Hilbert space can be written as a
sum of outer products. However, it is much easier to work with operators
that are expressed as matrices. Given operator Y and a basis set of kets
{la; > lag > ...]a, >}, we can construct an n x n table of complex numbers
whose nmth element is given by < a,|Y]a, >. The set of n* complex
numbers can most conveniently be written as a square matrix, where m is a
column index and n a row index. We use the notation Y to represent this
matrix, and the n mth element of that matrix is Y,,,,. The matrix Y is called
the matrix representation of operator Y. Show that we can express Y in the
form

Y = z lan >< am|Ym (8)

Consider the following equation in ket space,
YU >= |V > 9)

where Y is an operator and |¥ > an arbitrary ket. We take the inner product
of this equation with state |a,, > (Remember, taking an inner product of two
kets involves multiplying on the left by a bra), or

< ap Y|V >=< a4, | > . (10)



Evaluating this expression we obtain,

> Yiun < 0,V >=< a, |V > (11)

which can be written as a matrix equation
Yuv=u (12)

where we defined a column matrix ¥ whose n'th row has the entry < a,|¥ >.
The utility of a matrix representation for operator Y and ket |[¥ > is now
apparent. We can replace any abstract operator equation, such as Eq. (9),
with a more familiar matrix equation (12).

We can do the same in bra space. For example, consider the adjoint of
Eq. (9) where ¥ is the adjoint matriz of the column matrix ¥ (note: you can
consider the adjoint of a column matrix to be a row matrix). Note that the
nm 'th element of matrix A' is the complex conjugate of the mn’th element
of matrix A, i.e. ALm =A .,

<V =< VYT (13)
Show that the matrix representation of this equation is given by

gf — QTKT (14)

Matrix representation of 2 D system

Lets reconsider the operators Si,Ss, S5 discussed previously. We now seek
a representation of these operators with respect to some basis. Which basis
do we use?, we have infinite choices but a convenient one is just [+ >, |[— >.
Lets call the matrix representation of the operators S;, g; defined so that

< —|Si+> < —[Si]|—->

o = < H[So|+ > < +[Ss|— >
=2 = <—|52|+> <_|52|_>

_ ( < H|S5]+ > < +|S5]— > )
g3 =

_ ( < H|Si+ > < +|Si]— > )
Y1 =

< —|Ss|+ > < —|Ss3]—>



Note that o5 is diagonal with respect to this basis and so it’s eigenvalues
are on the diagonal. However, g,, g, are not. How would we find the
eigenvalues of the other matrices? Is |+ > a simultaneous eigenket of another
operator? These matrices are very famous and are called the Pauli spin
matrices, show that they satisfy the Jacobi identities, as well as the relations

[Qiagj] = QiQkGijk (16)
Hw Problem

Instead of basis |+ >, |— > consider the linear combinations

[>= —=(l+>—|->) (17)

a) Do | 1>, | J> form a valid basis set in Hilbert space?

b) Find the matrix representation of operators Sp, Ss, S3 in this basis. Do
they satisfy the Jacobi identity and the Lie Algebra as the matrices in the
|+ >, |— > representation?

c¢) Find the eigenstates of S3 in this representation, and express them as
column matrices.

d) Construct the following matrix

_ [ <H[1> <+H[I>
—_<<—\T> <[> (18)
e) Evaluate the matrix multiplication

Uu (19)

where u are the eigenstates obtained in part ¢). Comment on the significane
of this equation.

f) Construct U J‘, evaluate U U'. Comment.

g) A quantum state is given by the vector |¥ >= |+ >.
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i) Bob uses measuring device Ss to make a measurement, what result does
he obtain?

ii) After Bob’s measurement, Alice uses Sy to make a measurement. What
are her possibel results?, what is the expectation value of those measure-
ments?

iii) After Alice’s measurement, Bob repeats his measurements. Re-discuss
part i).

iv) Comment on Bob’s ability to infer if someone else, with devices Sy, S,
made a measurement on the system while he was not ”looking”. Assume he
obtained the value +1 for his first measurement. Is the same true if someone
snooped with an S; device?



