0.1 Lecture 11

0.2 Bra-ket notation

In the previous lecture we used the symbols ¢, or ¢,, or ¥ to represent a
vector, or quantum state, in Hilbert space. We will now introduce a new
notation, called the Dirac bra-ket notation. The Dirac bra-ket notation is a
concise and convenient way to describe quantum states. We introduce and
define the symbol

oo > (1)

to represent a quantum state. This is called a ket, or a ket vector. We use
it to denote a vector in Hilbert space. We say that a physical system is in
quantum state |« >, where « is the eigenvalue corresponding to operator A
that represents a physical measurement.

If we have two distinct quantum states |a; > and |ay >, then the following
ket

[ >= c1]|a; > +eo|an >, (2)

where c; is a complex number, is also a possible state for the system.

Dirac defined something called a bra vector, designated by < «. This is
not a ket, and does not belong in ket space e.g. |a > + < /3| has no meaning.
However, we assume for every ket |8 >, there exists a bra labeled < §|. The
bra < «| is said to be the dual of the ket |y >. We can ask the question:
since ¢1|ay > +co|ae > is a ket, what is the dual (or bra vector) associated
with that vector?

The answer is,

cilog > +ep|ag ><= ¢ < 1| +¢; < g (3)

where <= signifies a dual correspondence. This is an anti-linear relation.
Dirac allowed the the bra’s and ket’s to line up back to back, i.e.

<alf >= (Jla >, |8 >). (4)



The symbol < «|f > represents a complex number that is equal to the value
of the inner product of the ket | > with |3 >. We note, according to the
above definition, that

< alf >=< fla>". (5)
Dirac also defined something called an outer product,
la >< B. (6)

An outer product is allowed to stand next to a ket on its left, or next to a bra
on the bra’s right. Lets define X = |a >< f|, then if | > is an arbitrary
ket, one is allowed to construct

XU >=|a >< 8| |¥ > (7)

It looks like we have something like an inner product on the r.h.s of this
equation. Indeed, according to Dirac’s associative axiom of multiplication,
we are allowed to put parenthesis around the quantity < 3| |¥ > and equate
it to the value of the inner product < g|¥ >. Or

XU >=|a>< U >=cla>; c=(<B]¥>). (8)

The outer product X is an operator in Hilbert space. It acts on ket |[¥ >
from the left and turns it into another ket c¢ja >. Be careful! for |¥ > X
has no meaning, however < ¥|X does.

<UIX =<Vlla><fl=(<Vla>)<f|=d"<8]; d=<a|¥> (9)

If we take operator A and operate on a ket A|la >, is < a|A dual to it? In
general it is not, however the dual of A|a > is

< alAl <= Ala > (10)

where Af is called the hermitian conjugate of operator A. Sometimes A = AT,
then A is called an hermitian operator. Hermitian operators play a central
role in quantum theory.

e Show that X = Y, ¢;|a; >< a4, where ¢; is a real number, is hermitian.

e If Y = ¢ X is an operator and «a is a complex number, show Y = Xfa*



e Find the hermitian conjugate to X = |a >< f|.
e Show that the eigenvalues of a hermitian operator are real numbers.

e Assume there is a unique eigenstate for every eigenvalue of an hermitian
operator X. Show that the eigenvectors are orthogonal and linearly
independent. Consider the case where the restriction of non-degenerate
eigenstates is removed.

Using the tools provided by the Dirac bra-ket notation we reconsider
Postulate III. Consider a hermitian operator X, whose eigenstates |a > obey
the eigenvalue equation

X |la >=ala > (11)

where a is an eigenvalue. Suppose these eigenvalues are distinct, then the set
{la; > lag > ...|a, >} are mutually orthonormal (why?). Suppose a mea-
surement of observable X yields the value a,, with probability |c,|? where

U >=>"cplan > . (12)

Taking the inner product of |¥ > with state |a,, > we get

< am|U >=> ¢y < amlla, > (13)

but < ay,|a, >= dpmn and so

< |V >= chémn = Cpp- (14)

Therefore the probability for a measurement to yield eigenvalue a,, is given
by the square of the inner product < a,|¥ >, also called the probability
amplitude. Furthermore, since ¢, =< a,|¥ > and inserting this into the
equation above, we get

U >=3" < a,|¥ > |ay >= |ay >< a,|T > (15)

Using Dirac’s associative axiom we can re-write this

W >= Z(|an >< an|)|¥ > (16)

n



where the brackets contain the operator Y, |a, >< a,|. Since the left hand
side is the ket |¥ > this operator must be the identity operator, i.e. its action
to the ket U > on its right reproduces |¥ > i.e.,

> Jan >< a,| =1. (17)

If the above relation holds, we say that the set of kets |a, > are complete
and constitute a basis for the Hilbert space. We accept the assumption that
the set of eigenstates of an hermitian operator form a Hilbert space basis.

The set of postulates given above say nothing about time dependence
(dynamics). We assume that the physical system can change in time, in
the sense that the state vector |¥(¢) > is a function of time. Time plays a
special role in quantum mechanics, it is not considered a physical observable
(operator) but instead is treated as a classical variable, or parameter.

If the state vector |¥(¢) > changes in time so do the probability ampli-
tudes < a,|¥(t) >. The time evolution of the state |¥(¢) > is not arbitrary
but must satisfy the Schroedinger equation

Postulate V The state vector for a quantum system undergoes temporal
evolution according to the relation

0| (t) >

7
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= H|¥(t) > (18)
where the operator H is called the Hamiltonian operator. In many important
cases the Hamiltonian operator is hermitian, and represents the conserved
total energy.

For a hermitian Hamiltonian, find the time evolution equation for the
state < W(t)| that is dual to |¥(¢) >.

Expectation value and variance

According to the above discussion the state vector |¥(¢) > obeys the Schrodinger
equation and provides a deterministic description for the state vector. How-
ever, according to postulate III we can only obtain probabilities for a mea-
surement to yield a given allowed value (eigenvalue). In general this proba-
bility is time-dependent, since the inner product, for the amplitude

cn(t) =< n|¥(t) > (19)



is an explicit function of time. It is a central goal of the physicist making
observations on the quantum system to predict these amplitudes. It is useful
to introduce the notion of an ensemble when measuring outcomes that are
probabilistic. An ensemble is a collection of identical systems. By identical
we mean, at given time t, each measurement is on a system with the identical
state vector |¥(¢) >. We can then define an average, or mean, value for the
ensemble outcomes,

In this notation O; represents the value of possible outcomes, for operator O,
and p; is the probability for the i'th outcome to occur. The experimenter can
estimate p; by using the central limit theorem for frequency of occurrences.
If, out off all N members of the ensemble, a small subset n; yield the value
O;, probability p; is approximated by the ratio n;/N. The value obtained
becomes more accurate as N — oo. Note, this prescription requires that
> pi = 1. Quantum mechanics tells us that

pi(t) = | < 0¥ (1) > > =< O] ¥(t) >< U(t)|0; > (21)
where we have allowed explicit time dependence. We then get,

<0>=Y <O]¥(t) >< U(1)|0; > O; (22)

but this is the same as,
<0>=Y <00)¥(t) >< U(t)|0; >=< ¥(t)|0; >< 0;]0|¥(t) >
using Dirac’s associative multiplication axiom and assuming closure
>i |0; >< O;| = I we obtain
< O(t) >=< U(1)|0]T(t) > (23)

It also useful to measure how far one is away, on the average, from the average
value < O >. This measure is called the variance and is related to the mean
standard deviation. We define

0l=<(<0>-0)> = <<0>*-<0>0-0<0>+0*>
<O(t) >2 - < O®t)? > (24)



