0.1 Lecturel

Postulate (I) Associated with a physical observable (something that can be
measured in the lab) is an operator A. If a measurement is made, the value
obtained must be an eigenvalue of A. If

Ap =\ (1)

where ) is a constant (eigenvalue), then ¢ is called an eigenstate of operator
A. If X = a then it is common to label the eigenstate by that value ! e. g.

Ap, = a¢,. (2)

Postulate (II) Suppose a measurement is made, corresponding to operator
A and the value A = b is obtained. Immediately after that measurement the
system is said to be in quantum state ¢,. Any subsequent measurement (If
the system is not disturbed) with A will yield the value A = b with 100%
certainty.

Class discussion: Quantum Zeno effect, Itano et al. Phys. Rev. A 41, 2295
(1990).

0.1.1 Linear vector spaces

Suppose a physical operator A hasn possible, countable, outcomes or eigen-
values. For each eigenvalue there is an eigenstate ¢,, so that,

~

Adpy = A0y m=1,2,..0n (3)

We claim the eigenstates are members of a linear vector space V' that we
define below.

1. If ¢,, is an element of V so is ¢ ¢,, where ¢ is an arbitrary complex
number.

2. A binary operator of addition is defined. If ¢,,¢,, € V then so is a
new vector ¢y = ¢ + O = Oy + P

'If several, linear independent ¢, correspond to a single eigenvalue, they are called
degenerate eigenstates.




3. There exists a null vector 0 so that ¢, + 0 =0+ ¢, = P,
4. The following must hold @y, + (¢n + dm) = (P + On) + I
Class discussion: examples of common vector spaces

Some definitions

1. If the relation

191+ oo+ ... +Cppy, =0 (4)

holds only for ¢; = ¢3 = ... ¢;, = 0, the set of vectors ¢1, ¢s...¢,, are said
to be linear independent. Otherwise, they are linear dependent.

2. A linear vector space is n-dimensional if it contains n linear independent
vectors but not n + 1 vectors.

3. If V contains n linear independent vectors for every integer, it is an
infinite dimensional space.

4. A set of vectors ¢q, ¢s...0, is said to span the space if each vector in V
is a linear combination of them.

We call the vector space spanned by the eigenstates of physical operator A
Hilbert space?. Since we know, according to postulate II, that ¢, is associated
with a physical measurement that produced eigenvalue a, what does the new
vector

Y =c1d1+ g + .+ Can (5)

represent 7 The answer is given by an additional postulate of the Copenhagen
interpretation.

Postulate (IIT) A physical system is represented by a vector ¥ in Hilbert
space. According to postulate I, the measurement A will result in one of its
eigenvalues b, but with a probability given by the quantity |cp|?.

It is our intention, for a given physical system, to be able to predict the
set of probabilities |c;|?, |ca|?...|cn|?. To that end we define the inner product
in our vector space.

2more precisely, Hilbert space is an infinite dimensional space that is non-denumerable,
but we needn’t be fuss-budgets with the definition



Definition: An inner product of two vectors ¢, and ¢, is a mapping into a
complex number. We can represent this mapping by the symbol

(Brms br) (6)
or, in this course, we will use the bra-ket notation
< Pmldx > . (7)
This mapping is linear, if ¢ = ¢, ¢ + ¢ Py then
< ) >= Cm < Pi|Om > FCn < Pi|n > . (8)
However
< Plox >= p < G| dr >+ < fnldk > (9)

where ¢* is the complex conjugate of c. The latter relation is anti-linear.
From the definition above we require < ¢, |¢p, >=< é,|¢, >*, thus <
Om|bm >=< Om|dm >* and therefore < ¢,|d, > > 0 ie. it is a real
number. The equality is satisfied only for the case where the vector ¢ is the
null vector 0.

Postulate (IV) The null vector in Hilbert space does not represent a phys-
ical state.
Using the latter relation we can ascribe a length to each physical state in

Hilbert space.
U] = /< V¥ > (10)

For any state U with length ||¢|| we can always find a renormalized state
U =0/, /[|¥]| so that < ¥'|¥ >=1.

More definitions

e Any two vectors (states) ¢, ¢, in Hilbert space that have the property
< ¢m|dn >= 0, are said to be orthogonal.

o If a set of states ¢y, ¢s...¢,, are mutually orthogonal, and if we normalize
each state to unity, so that

< ¢k|¢m >= 5km (11)

then the set is said to be an orthonormal set.



e A set of vectors that are linear independent, span the Hilbert space,
and are orthonormal are said to constitute a basis for the Hilbert space.

Finally, we offer, without proof, the Schwarz inequality. For any two
quantum states ¢,,, ¢,, the following inequality must be true

| < bmldn > [ < |ldml| [|¢nll (12)



