## ION TRAP Quantum Computers

In order to build a quantum computer we need something that can serve as a qubit. It should behave as a quantum mechanical system but be scalable. Several candidates for possible quantum computer applications have been advanced. They include

Ion - trap quantum computing (Cirac-Zoller protocol)
NMR (Nulcear Magnetic Resonance) quantum computers
Adiabatic quantum computing - Dwave
Photonic quantum computers
Cavity QED quantum computers etc.

We shall discuss the Cirac-Zoller scheme which treats a trapped atomic ion as the fundamental qubit.
A working quantum computer should allow individual qubits to be individually addressed, allow two or more qubits to "talk" to each other (in order to built gates), and be scalable. The ion-trap quantum computer has already met these three criteria.

## The linear rf-ion

trap


You may remember from your physics 181 that the electric potential of a cylinder, held at a constant potential $V_{0}$ has the form

$$
\begin{aligned}
\mathrm{V}(\mathrm{x}, \mathrm{y}) & =V_{0}+\lambda \log \left(\frac{R}{\rho}\right) \text { for } \rho>\mathrm{R} \\
& =V_{0} \text { for } \rho \leqslant \mathrm{R}
\end{aligned}
$$

where $\rho=\sqrt{x^{2}+y^{2}}$ is the distance from the axis along the center of the cylinder, R is th radius of the cylinder and $\lambda$ is a constant. Lets make a 3D plot of this potential.

```
vo = 2;
```



```
    \(\left.\mathrm{vo}+\log \left[\mathrm{RO} / \operatorname{Sqrt}\left[(x-x 0)^{\wedge} 2+(y-y 0)^{\wedge} 2\right]\right], \operatorname{Sqrt}\left[(x-x 0)^{\wedge} 2+(y-y 0)^{\wedge} 2\right]<=R 0, v 0\right]\)
Plot3D[v[x, y, 0, 0, 0.5], \{x, -10, 10\}, \{y, -10, 10\}, PlotPoints \(\rightarrow\) 100, PlotRange \(\rightarrow\) All]
dipole[x_, \(\left.y_{-}\right]:=v[x, y, 0,2,0.5]-v[x, y, 0,-2,0.5]\)
Plot3D[dipole[x, y], \(\{x,-10,10\},\{y,-10,10\}\), PlotPoints \(\rightarrow 100\), PlotRange \(\rightarrow\) All]
quadrupole[ \(\left.x_{-}, y_{-}\right]:=\)
    \(v[x, y, 0,2,0.5]-v[x, y,-2,0,0.5]+v[x, y, 0,-2,0.5]-v[x, y, 2,0,0.5]\)
Plot3D[quadrupole[x, y], \{x, -4, 4\}, \{y, -4, 4\}, PlotPoints \(\rightarrow\) 100, PlotRange \(\rightarrow\) All]
```

A more care full analysis shows that near the origin the potential has the form
$V(x, y)=V_{0}\left(x^{2}-y^{2}\right) \Phi_{0} / 2$ where $\Phi_{0}$ is a constant.
$\operatorname{vquad}\left[x_{-}, y_{-}\right]=\operatorname{VO}\left(x^{\wedge} 2-y^{\wedge} 2\right)$
$2\left(x^{2}-y^{2}\right)$
Plot3D[Vquad [x, $y$ ], $\{x,-4,4\},\{y,-4,4\}]$
Now, instead of a constant voltage $V_{0}$ on the electrodes, we can change the polarity in a time-dependent way, lets consider
a $\operatorname{Cos}[\omega t]$ dependence so that now the potential at the origin looks like,
$\mathrm{V}(\mathrm{x}, \mathrm{y})=V_{0} \operatorname{Cos}(\omega \mathrm{t})\left(x^{2}-y^{2}\right) \Phi_{0} / 2$


```
Vquad[x_, y_, t_] = vo Cos[\omegat] (x^2- y^2) /. \omega ( 
2( }\mp@subsup{\textrm{x}}{}{2}-\mp@subsup{y}{}{2})\operatorname{Cos}[2\pit
Manipulate[
    Plot3D[Vquad[x, y, t], {x, -4, 4}, {y, -4, 4}, PlotRange }->{-30, 30}],{t, 0, 2}
So how does a charged particle behave under the influence of such a "rotating saddle" potential ? The force that a particle experiences is the negative of the gradient of the potential times its charge \(q\) i.e.
F
F
and Newton's equation of motion are
\(m \ddot{x}=-q x V_{0} \operatorname{Cos}(\omega t)\)
\(\mathrm{m} \ddot{y}=\mathrm{q} y V_{0} \operatorname{Cos}(\omega \mathrm{t})\)
```



```
eq2 = y''[t] == q/m y[t] Cos[\omegat] /. {q->1,m->1, \omega->2 Pi}
(* initial conditions *)
x0 = 2.0;
y0 = - 1.0;
v0x = 1.0;
v0y = 1.0;
x"}[\textrm{t}]==-\operatorname{Cos}[2\pit]x[t
y'[t] == Cos[2\pit] y[t]
tend = 10;
sols = Flatten[NDSolve[{eq1, eq2, x[0] == x0, y[0] == y0, x'[0] == v0x, y'[0] == v0y},
    {x[t], y[t]}, {t, 0, tend}]];
fig1 = ParametricPlot[Evaluate[{x[t], y[t]} /. sols], {t, 0, tend}, PlotRange }->\mathrm{ All]
```

Analytic studies of the above equations show that the dynamics can be described by two types of motion, one is called
a micromotion and is evidenced above by the rapidly oscillating wiggles in the overall motion. More important is the overall
average motion that is described by a simple 2D harmonic oscillator potential that has the form
$\mathrm{V}(\mathrm{x}, \mathrm{y})=1 / 2 \mathrm{~m} \Omega^{2}\left(x^{2}+y^{2}\right)$
$\Omega=\frac{q \Phi_{0}}{m \omega \sqrt{2}}$
this potential "binds" the system to the vicinity of the origin. We can analytically solve such a 2 D system, the result
is

```
\(\mathrm{x}(\mathrm{t})=A_{x} \operatorname{Cos}\left(\Omega \mathrm{t}+\phi_{x}\right)\)
\(\mathrm{y}(\mathrm{t})=A_{y} \operatorname{Cos}\left(\Omega \mathrm{t}+\phi_{y}\right)\)
```

where the quantities $A_{x} A_{y} \phi_{x} \phi_{y}$ are related to the initial conditions of the ions motion

```
x(0)= x0}=\mp@subsup{A}{x}{}\operatorname{Cos}(\mp@subsup{\phi}{x}{}
y(0)= yo = A y Cos( }\mp@subsup{\phi}{y}{}
```

and $v_{x}(0)=v_{\mathrm{ox}}=-\Omega A_{x} \operatorname{Sin}\left(\phi_{x}\right) v_{y}(0)=v_{\mathrm{oy}}=-\Omega A_{y} \operatorname{Sin}\left(\phi_{y}\right)$ and so $\tan \left(\phi_{x}\right)=-v_{\mathrm{ox}} / \Omega \mathrm{x}_{0}$
$\tan \left(\phi_{y}\right)=-v_{\text {oy }} / \Omega y_{0}$
$A_{x}=\mathrm{x}_{0} / \operatorname{Cos}\left(\phi_{x}\right)$
$A_{y}=y_{0} / \operatorname{Cos}\left(\phi_{x}\right)$

```
Omega = q/m/\omega/Sqrt[2] /. {q > 1,m m 1, \omega->2 Pi};
phix = ArcTan[-v0x / x0 / Omega];
phiy = ArcTan[-v0y / y0 / Omega];
Ax = x0 / Cos [phix];
Ay = y0 / Cos[phiy];
xmotion[t_] = Ax Cos[Omegat + phix];
ymotion[t_] = Ay Cos[Omegat + phiy];
ion[t_] := Show[fig1, Graphics[{PointSize[0.05], Point[{xmotion[t], ymotion[t]}]}],
    PlotRange }->{{-1.1 Ax, 1.1 Ax}, {-1.1 Ay, 1.1 Ay}}, Axes -> True
fig2 = Manipulate[ion[t], {t, 0, 2 Pi / Omega}]
Hyperlink["http://www.youtube.com/watch?v=XTJznUkAmIY"]
Hyperlink["http://www.youtube.com/watch?v=bkYXNeJ8IPO"]
Hyperlink["http://www.youtube.com/watch?v=PYpbKSmOnNc"]
http://www.youtube.com/watch?v=XTJznUkAmIY
http://www.youtube.com/watch?v=bkYXNeJ8IP0
http://www.youtube.com/watch?v=PYpbKSmOnNc
```

