Class Project Due 5/3/2016 2:30 PM

(a) For a register containing n bits we pointed out, in the previous lecture that
$U_{\mathrm{FT}}\left|b_{n-1} b_{n-2} \ldots b_{1} b_{0}\right\rangle=\frac{1}{2^{n / 2}}\left(|0\rangle+e^{i 2 \pi\left[\cdot b_{0}\right]}|1\rangle\right)\left(|0\rangle+e^{i 2 \pi\left[\cdot b_{1} b_{0}\right]}|1\rangle\right) \ldots(|0\rangle+$ $\left.e^{i 2 \pi\left[. b_{n-1} b_{n-2} \ldots b_{1} b_{0}\right]}|1\rangle\right)$
and we showed explicitly for the case $\mathrm{n}=2$ the validity of this identity. Do the same for the case $\mathrm{n}=3$. Show all work.
(b) Consider the following circuit diagram

Build each of the seven components in that diagram. e.g. the first component would be the 3 -qubit gate $\mathrm{H} \otimes \mathrm{I} \otimes \mathrm{I}$ on the extreme left of the figure. Multiply each of these seven component gates, and compare the result with the 3-Qubit QFT gate. Comment.
(c) Consider a 3 bit register $|\mathrm{x}\rangle_{3}$ and the following function $\mathrm{f}:\{0,1\}^{\otimes 3} \longrightarrow\{0,1\}$

x	$f(x)$
000	0
001	1
010	0
011	1
100	0
101	1
110	0
111	1

Construct an operator that has the property
$U_{f}|x\rangle_{3}|y\rangle=|x\rangle_{3}|f(x)+y\rangle$
(d) Now construct a gate W_{f} so that

$$
W_{f}|0\rangle_{3}|0\rangle=\frac{1}{\sqrt{8}} \sum_{a=0}^{a=7}|a\rangle_{3}|f(a)\rangle
$$

Write a Mathematica code, which incorporates the gate constructed above, that has as its input $|0\rangle_{3}|0\rangle$,
and outputs the result for $\frac{1}{\sqrt{8}} \sum_{a=0}^{a=7}|a\rangle_{3}|f(a)\rangle$.
(e) Now construct a simulation (Mathematica code) of a quantum computer that has as its input | 000 $\rangle_{3}|0\rangle$. That input goes
through the gate constructed in part (d) above. Finally, that output goes through a 3-qubit QFT (acting on the first register) gate.
Perform measurements of the output in that register. Perform several runs and make a histogram of the output, comment on the significance of your results. (Remember: A simulation should behave just like a quantum computer!)

