## Class Project Due 5/3/2016 2:30 PM

(a) For a register containing n bits we pointed out, in the previous lecture that

 $U_{\text{FT}}|b_{n-1}b_{n-2}...b_{1}b_{0}\rangle = \frac{1}{2^{n/2}}(|0\rangle + e^{i\,2\pi\,[.b_{0}]}|1\rangle)(|0\rangle + e^{i\,2\pi\,[.b_{1}b_{0}]}|1\rangle)...(|0\rangle + e^{i\,2\pi\,[.b_{1}b_{0}]}|1\rangle)$ 

 $e^{i 2\pi [.b_{n-1} b_{n-2} ... b_1 b_0]} |1\rangle$ 

and we showed <u>explicitly</u> for the case n=2 the validity of this identity. Do the same for the case n=3. Show all work.

(b) Consider the following circuit diagram



Build each of the seven components in that diagram. e.g. the first component would be the 3-qubit gate  $H \otimes I \otimes I$  on the extreme left of the figure. Multiply each of these seven component gates, and

compare the result with the 3-Qubit QFT gate. Comment.

(c) Consider a 3 bit register  $|x\rangle_3$  and the following function f:  $\{0,1\}^{\otimes 3} \longrightarrow \{0,1\}$ 

| х   | f(x) |
|-----|------|
| 000 | 0    |
| 001 | 1    |
| 010 | 0    |
| 011 | 1    |
| 100 | 0    |
| 101 | 1    |
| 110 | 0    |
| 111 | 1    |

Construct an operator that has the property  $U_f | x \rangle_3 | y \rangle = | x \rangle_3 | f(x) + y \rangle$ 

(d) Now construct a gate  $W_f$  so that

$$W_f \mid 0 \rangle_3 \mid 0 \rangle = \frac{1}{\sqrt{8}} \sum_{a=0}^{a=7} \mid a \rangle_3 \mid f(a) \rangle$$

Write a Mathematica code, which incorporates the gate constructed above, that has as its input  $|0\rangle_3|0\rangle$ ,

$$\frac{1}{\sqrt{8}}\sum_{a=0}^{a=7} |a\rangle_3$$

$$\begin{array}{ccc}
 & \mathcal{W}_{f} \\
\mathbf{2} & | & Classproject.nb^{3} \\
\end{array} & \begin{array}{ccc}
 & \frac{1}{\sqrt{8}} & \sum_{a=0}^{a=7} & | & a \rangle_{3} \\
\end{array}$$

and outputs the result for  $\frac{1}{\sqrt{8}}\sum_{a=0}^{a=7} |a\rangle_3 |f(a)\rangle$ .

 $W_{f}$ 

(e) Now construct a simulation (*Mathematica* code) of a quantum computer that has as its input | 000  $\rangle_3|0\rangle$ . That input goes

through the gate constructed in part (d) above. Finally, that output goes through a 3-qubit QFT (acting on the first register ) gate.

Perform measurements of the output in that register. Perform several runs and make a histogram of the output, comment on the significance of your results. (Remember: A simulation should behave just like a quantum computer !)