
Cirac - Zoller Scheme
Suppose we have cooled the ions situated along the z-axis so that their xy motion is minimized via
Laser cooling. However they are still free to move along the z-axis. Image the set of ions all moving
in unison so that the center of mass undergoes harmonic motion. In the quantum realm the excitations 
of this motion are called phonons. For vibrations with lowest energy is called the ground
state and no phonons are present, the next highest energy state has one phonon, and so on. We
can describe this by a ladder like stucture of energy levels

no phonons

one phonon

two phonons

three phonons

w
Each phonon has an energy h n

The ions are sufficently apart from each other so that they can be addressed by a laser individually.
The laser can excite, or de-excite the ion from its internal ground state |g\ to its excited internal
state |e\. A laser can also be used to add or emit a phonon. Then the internal ground state
of an ion can have several energy states 

|g \|0\n     Ground internal state+no phonons    Energy = Eg
|g \|1\n     Ground internal state+1 phonon        Energy = Eg + hn
|g \|2\n     Ground internal state+2 phonons       Energy = Eg + 2 hn
ª
|e \|0\n     Excited internal state+no phonons    Energy = Eg + — w
|e \|1\n     Excited  internal state+1 phonon        Energy = Eg + — w+  hn
|e \|2\n     Excited  internal state+2 phonons       Energy = Eg +  — w + 2 hn
ª

Note we assume that the internal state energy difference — w >> hn

For a given ion m we let | g\ represent  the Qbit |0\  and |e \  the Qbit |1\
so if we have a group of four ions and the first two are in the ground internal state
and the the last two are in an internal excited state they would represent the
computational basis state

|0011\
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For a string of ions lets consider the m'th ion and label its internal states as
|g\m  |e\m  ( |0\m  |1\m).  Likewise for the n'th ion we use teh notation |g\n  |e\n  .

Imagine the system starting out as

|g\m|g\n |0\n     total energy  2 Eg

Let' shine a laser on ion m with a frequency of  w -hn.  This frequency is not sufficient
to excite the ion into its excited state |e\m because you need at least an energy  —w to that
so the effect of this laser pulse, which we call shorthand Um on this state is

Um |g\m|g\n |0\n ö |g\m|g\n |0\n

Likewise

Um |g\m|e\n |0\n ö |g\m|e\n |0\n

However

Um |e\m|g\n |0\n ö -i |g\m|g\n |1\n

That is the if Um  acts on state |e\m|g\n |0\n it changes to a new state where the m'th Qubit changes
its value form 1  to 0 while a phonon is created. The energy of the initial configuration
|e\m|g\n |0\n   is  —w + 2Eg  whereas the energy of
|g\m|g\n |1\n   is 2Eg + hn   and so the difference in energy is —w-hn  which is exactly the energy 
of the laser pulse photon applied on ion m. Thus by energetics alone we see why
Um |e\m|g\n |0\n ö -i |g\m|g\n |1\n is possible. But what about the -i factor, where does that come from ?  
It turns out we can adjust the polarization properties of the laser in order the -i phase factor
appears (Deeper discussion of this requires a better understanding of quantum optics, which is beyond 
the scope of this course).
Finally  we also have

Um |e\m|e\n |0\n ö -i |g\m|e\n |1\n

In summary, after the first pulse

Um |g\m|g\n |0\n ö |g\m|g\n |0\n
Um |g\m|e\n |0\n ö |g\m|e\n |0\n
Um |e\m|g\n |0\n ö -i |g\m|g\n |1\n
Um |e\m|e\n |0\n ö -i |g\m|e\n |1\n

We now conisder a similar laser pulse, which we call Vn ,  on ion n (this will have diffrenet polarization 
properties than the aforementioned pulse). We then have

Vn |g\m|g\n |0\n ö |g\m|g\n |0\n
Vn |g\m|e\n |0\n ö |g\m|e\n |0\n
Vn |g\m|g\n |1\n ö - |g\m|g\n |1\n
Vn |g\m|e\n |1\n ö  |g\m|e\n |1\n

For each state in the first collumn the photon does not have enough energy to change the
state of Qbit n. 

Now we repeat pulse Um once again so that 

Um  |g\m|g\n |0\n  ö  |g\m|g\n |0\n
Um |g\m|e\n |0\n  ö  |g\m|e\n |0\n
Um  |g\m|g\n |1\n  ö  -i |e\m|g\n |0\n 
Um  |g\m|e\n |1\n ö    i |e\m|e\n |0\n
 
 The three-pulses in this sequence  W = UmVn  Um  then lead to the following
 transformations
 
 W |g\m|g\n |0\n ö |g\m|g\n |0\n
 W |g\m|e\n |0\n ö |g\m|e\n |0\n
 W |e\m|g\n |0\n ö |e\m|g\n |0\n
 W |e\m|g\n |0\n ö - |e\m|e\n |0\n
 
 Notice that all states return to their original configuartions, except the last state which
 picks up a negative sign.
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Consider the  superposition 

1

2
( |g\n ±  |e\n) 

According to the above table

W  |g\m
1

2
( |g\n ±  |e\n) |  |0\n = |g\m

1

2
( |g\n ±  |e\n) |  |0\n

W  |e\m
1

2
( |g\n ±  |e\n) |  |0\n =  |e\m

1

2
( |g\n °  |e\n) |  |0\n

So lets define the gate

Hn W Hn  here Hn is the Hadamard gate acting on Qbit n.  Therefore

Hn W Hn |g\m |g\n |0\n = Hn W |g\m 1

2
( |g\n +  |e\n)  |0\n = 

Hn |g\m 1

2
( |g\n +  |e\n)  |0\n = |g\m|g\n |0\n

Hn W Hn |g\m |e\n |0\n = Hn W |g\m 1

2
( |g\n -  |e\n)  |0\n = 

Hn |g\m 1

2
( |g\n -  |e\n)  |0\n = |g\m| e \n |0\n

Hn W Hn |e\m |g\n |0\n = Hn W |e\m 1

2
( |g\n +  |e\n)  |0\n = 

Hn |e\m 1

2
( |g\n -  |e\n)  |0\n = |e\m| e \n |0\n

Hn W Hn |e\m |e\n |0\n = Hn W |e\m 1

2
( |g\n -  |e\n)  |0\n = 

Hn |e\m 1

2
( |g\n +  |e\n)  |0\n = |e\m| g \n |0\n
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In summary
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Thus we notice that the sequence of operations
Hn W Hn is equivalent to a CNOT gate i.e. Qbit n is flipped if Qbit m is in state |e\
but is left alone if Qbit m is in state |g\.
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(8,9) and, with a different formulation, Milburn(10) proposed a scheme
for “hot” quantum gates, i.e., their procedures for gate operations do
not require ground state cooling of an ion string. Although successfully
applied to trapped Be+ ions,(11) with the trapping parameters currently
available, these gate procedures are not easily applicable to Ca+ ions.
Other gates based on ac Stark shifts have been suggested by Jonathan
et al.(12) and holonomic quantum gates (using geometric phases) have been
proposed by Duan et al.(13) A different CNOT-gate operation also based
on the ac Stark effect which does not require individual addressing and
ground state cooling has been realized with trapped Be+ ions.(14)

3. SPECTROSCOPY IN ION TRAPS

Ions are considered to be trapped in a harmonic potential with fre-
quency νz, interacting with the travelling wave of a single mode laser
tuned close to a transition that forms an effective two-level system.

Internal state detection of a trapped ion is achieved using the electron
shelving technique. For this, one of the internal states of the trapped atom
is selectively excited to a third short-lived state thereby scattering many
photons on that transition if the coupled internal state was occupied. If,
on the other hand, the atom’s electron resides in the uncoupled state of
the qubit (i.e., the electron is shelved in that state) then no photons are
scattered and thus the internal state can be detected with an efficiency of
nearly 100%.(15)

Figure 1 shows the relevant levels of the Ca+ ion which are populated
in the experiment. The qubit is implemented using the narrow quadrupole
transition at 729 nm, i.e., |g〉=|S1/2〉 and |e〉=|D5/2〉. For optical cooling
and state detection, resonance fluorescence on the S1/2–P1/2 transition is

S1/2

P1/2

D3/2729nm

D5/2

P3/2

866nm

393nm

397nm

854nm

Fig. 1. Level scheme of 40Ca+. The qubit is implemented using the narrow quadrupole
transition. All states split up into the respective Zeeman sublevels.
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